@@ -39,54 +39,70 @@ RungeKutta(order::Int=4; supersample::Int=1) = RungeKutta(order, supersample)
39
39
40
40
" Get the `f!` and `h!` functions for the explicit Runge-Kutta solvers."
41
41
function get_solver_functions (NT:: DataType , solver:: RungeKutta , fc!, hc!, Ts, _ , nx, _ , _ )
42
- order = solver. order
43
- Ts_inner = Ts/ solver. supersample
44
42
Nc = nx + 2
43
+ f! = if solver. order== 4
44
+ get_rk4_function (NT, solver, fc!, Ts, nx, Nc)
45
+ elseif solver. order== 1
46
+ get_euler_function (NT, solver, fc!, Ts, nx, Nc)
47
+ else
48
+ throw (ArgumentError (" only 1st and 4th order Runge-Kutta is supported." ))
49
+ end
50
+ h! = hc!
51
+ return f!, h!
52
+ end
53
+
54
+ " Get the f! function for the 4th order explicit Runge-Kutta solver."
55
+ function get_rk4_function (NT, solver, fc!, Ts, nx, Nc)
56
+ Ts_inner = Ts/ solver. supersample
45
57
xcur_cache:: DiffCache{Vector{NT}, Vector{NT}} = DiffCache (zeros (NT, nx), Nc)
46
58
k1_cache:: DiffCache{Vector{NT}, Vector{NT}} = DiffCache (zeros (NT, nx), Nc)
47
59
k2_cache:: DiffCache{Vector{NT}, Vector{NT}} = DiffCache (zeros (NT, nx), Nc)
48
60
k3_cache:: DiffCache{Vector{NT}, Vector{NT}} = DiffCache (zeros (NT, nx), Nc)
49
61
k4_cache:: DiffCache{Vector{NT}, Vector{NT}} = DiffCache (zeros (NT, nx), Nc)
50
- if order== 1
51
- f! = function euler_solver! (xnext, x, u, d, p)
52
- CT = promote_type (eltype (x), eltype (u), eltype (d))
53
- xcur = get_tmp (xcur_cache, CT)
54
- k1 = get_tmp (k1_cache, CT)
55
- xterm = xnext
56
- @. xcur = x
57
- for i= 1 : solver. supersample
58
- fc! (k1, xcur, u, d, p)
59
- @. xcur = xcur + k1 * Ts_inner
60
- end
61
- @. xnext = xcur
62
- return nothing
62
+ f! = function rk4_solver! (xnext, x, u, d, p)
63
+ CT = promote_type (eltype (x), eltype (u), eltype (d))
64
+ xcur = get_tmp (xcur_cache, CT)
65
+ k1 = get_tmp (k1_cache, CT)
66
+ k2 = get_tmp (k2_cache, CT)
67
+ k3 = get_tmp (k3_cache, CT)
68
+ k4 = get_tmp (k4_cache, CT)
69
+ xterm = xnext
70
+ @. xcur = x
71
+ for i= 1 : solver. supersample
72
+ fc! (k1, xcur, u, d, p)
73
+ @. xterm = xcur + k1 * Ts_inner/ 2
74
+ fc! (k2, xterm, u, d, p)
75
+ @. xterm = xcur + k2 * Ts_inner/ 2
76
+ fc! (k3, xterm, u, d, p)
77
+ @. xterm = xcur + k3 * Ts_inner
78
+ fc! (k4, xterm, u, d, p)
79
+ @. xcur = xcur + (k1 + 2 k2 + 2 k3 + k4)* Ts_inner/ 6
63
80
end
64
- elseif order== 4
65
- f! = function rk4_solver! (xnext, x, u, d, p)
66
- CT = promote_type (eltype (x), eltype (u), eltype (d))
67
- xcur = get_tmp (xcur_cache, CT)
68
- k1 = get_tmp (k1_cache, CT)
69
- k2 = get_tmp (k2_cache, CT)
70
- k3 = get_tmp (k3_cache, CT)
71
- k4 = get_tmp (k4_cache, CT)
72
- xterm = xnext
73
- @. xcur = x
74
- for i= 1 : solver. supersample
75
- fc! (k1, xcur, u, d, p)
76
- @. xterm = xcur + k1 * Ts_inner/ 2
77
- fc! (k2, xterm, u, d, p)
78
- @. xterm = xcur + k2 * Ts_inner/ 2
79
- fc! (k3, xterm, u, d, p)
80
- @. xterm = xcur + k3 * Ts_inner
81
- fc! (k4, xterm, u, d, p)
82
- @. xcur = xcur + (k1 + 2 k2 + 2 k3 + k4)* Ts_inner/ 6
83
- end
84
- @. xnext = xcur
85
- return nothing
81
+ @. xnext = xcur
82
+ return nothing
83
+ end
84
+ return f!
85
+ end
86
+
87
+ " Get the f! function for the explicit Euler solver."
88
+ function get_euler_function (NT, solver, fc!, Ts, nx, Nc)
89
+ Ts_inner = Ts/ solver. supersample
90
+ xcur_cache:: DiffCache{Vector{NT}, Vector{NT}} = DiffCache (zeros (NT, nx), Nc)
91
+ k_cache:: DiffCache{Vector{NT}, Vector{NT}} = DiffCache (zeros (NT, nx), Nc)
92
+ f! = function euler_solver! (xnext, x, u, d, p)
93
+ CT = promote_type (eltype (x), eltype (u), eltype (d))
94
+ xcur = get_tmp (xcur_cache, CT)
95
+ k = get_tmp (k_cache, CT)
96
+ xterm = xnext
97
+ @. xcur = x
98
+ for i= 1 : solver. supersample
99
+ fc! (k, xcur, u, d, p)
100
+ @. xcur = xcur + k * Ts_inner
86
101
end
102
+ @. xnext = xcur
103
+ return nothing
87
104
end
88
- h! = hc!
89
- return f!, h!
105
+ return f!
90
106
end
91
107
92
108
"""
0 commit comments