-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamend_charges.py
80 lines (62 loc) · 2.53 KB
/
amend_charges.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import sys
import os
import libsbml
from tqdm import tqdm
import pandas as pd
import helper_functions as hf
'''
Usage: amend_charges.py <path_input_sbml-file> <path_output_sbml-file>
<path_out_tsv-file_mismatches>
Transfers charges from Notes to the fbc-Plugin Annotation. If none is found, BiGG-DB is used for a search. If BiGG
contains multiple or no charges, the metabolite is returned as a csv-formatted file.
'''
def main(args):
# console access
if len(args) < 6:
print(main.__doc__)
sys.exit(1)
infile = args[1]
outfile = args[2]
outfile_tsv = args[3]
if not os.path.exists(infile):
print("[Error] %s : No such file." % infile)
sys.exit(1)
if not os.path.exists(infile):
print("[Error] %s : No such file." % infile)
sys.exit(1)
reader = libsbml.SBMLReader()
writer = libsbml.SBMLWriter()
# Conversion to Fbc here
command = "python convertCobraToFbc.py " + infile + " " + outfile
os.system(command)
# Read SBML File
doc = reader.readSBML(outfile)
model = doc.getModel()
# Use BiGG Database for charge annotation, if none is given
mismatches = pd.DataFrame(columns=["model_index", "id", "name", "charge_bigg", "charge_model", "formula_model"])
num_spec = model.getNumSpecies()
for i in tqdm(range(num_spec)):
# check fbc plugin for formula
if model.getSpecies(i).getPlugin('fbc').isSetCharge():
continue
meta_id = str(model.getSpecies(i).getMetaId())
pruned_id = meta_id[2:-2]
metabolite_info = hf.bigg_request(pruned_id, "metabolites")
charges_bigg = metabolite_info["charges"]
if len(charges_bigg) == 1:
model.getSpecies(i).getPlugin('fbc').setCharge(charges_bigg[0])
note_str = f"Changed charge from '' to {charges_bigg[0]}. Source: BiGG"
model = hf.add_note_species(model, note_str, meta_id)
lnk = f"https://identifiers.org/bigg.reaction:{pruned_id}"
model = hf.add_link_annotation_species(model, lnk, meta_id)
else:
mismatches.loc[len(mismatches.index)] = [i, meta_id, model.getSpecies(i).getName(),
charges_bigg, "",
model.getSpecies(meta_id).getPlugin('fbc').getChemicalFormula()]
# Saving new model
doc.setModel(model)
writer.writeSBML(doc, outfile)
# Exporting mismatches
mismatches.to_csv(outfile_tsv, sep="\t")
if __name__ == '__main__':
main(sys.argv)