-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy path0124-binary-tree-maximum-path-sum.js
41 lines (37 loc) · 1.21 KB
/
0124-binary-tree-maximum-path-sum.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/**
* 124. Binary Tree Maximum Path Sum
* https://leetcode.com/problems/binary-tree-maximum-path-sum/
* Difficulty: Hard
*
* A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the
* sequence has an edge connecting them. A node can only appear in the sequence at most
* once. Note that the path does not need to pass through the root.
*
* The path sum of a path is the sum of the node's values in the path.
*
* Given the root of a binary tree, return the maximum path sum of any non-empty path.
*/
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var maxPathSum = function(root) {
let result = -Infinity;
function traverse(node) {
if (!node) return 0;
const leftValue = Math.max(traverse(node.left), 0);
const rightValue = Math.max(traverse(node.right), 0);
result = Math.max(result, node.val + leftValue + rightValue);
return node.val + Math.max(leftValue, rightValue);
}
traverse(root);
return result;
};