-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathElectrograviticTensor.wl
453 lines (452 loc) · 45.9 KB
/
ElectrograviticTensor.wl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
(* ::Package:: *)
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, index1_, index2_]] :=
ElectrograviticTensor[ResourceFunction["MetricTensor"][matrixRepresentation, coordinates, index1, index2],
(Superscript["\[FormalCapitalX]", ToString[#1]] & ) /@ Range[Length[coordinates]], True, True] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, index1_, index2_],
timelikeCongruence_List] := ElectrograviticTensor[ResourceFunction["MetricTensor"][matrixRepresentation, coordinates,
index1, index2], timelikeCongruence, True, True] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[index1] && BooleanQ[index2] && Length[coordinates] == Length[timelikeCongruence]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
index1_, index2_] := ElectrograviticTensor[ResourceFunction["MetricTensor"][matrixRepresentation, coordinates,
metricIndex1, metricIndex2], (Superscript["\[FormalCapitalX]", ToString[#1]] & ) /@ Range[Length[coordinates]], index1, index2] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["MatrixRepresentation"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, covariantRiemannTensor,
electrograviticTensor}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ]; covariantRiemannTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(matrixRepresentation[[index[[1]],#1]]*riemannTensor[[#1,
index[[2]],index[[3]],index[[4]]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 4]]]; electrograviticTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(covariantRiemannTensor[[First[index],First[#1],Last[index],
Last[#1]]]*timelikeCongruence[[First[#1]]]*timelikeCongruence[[Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
If[index1 === True && index2 === True, electrograviticTensor, If[index1 === False && index2 === False,
Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[First[index],First[#1]]]*
Inverse[matrixRepresentation][[Last[#1],Last[index]]]*electrograviticTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]],
If[index1 === True && index2 === False, Normal[SparseArray[
(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[#1,Last[index]]]*electrograviticTensor[[
First[index],#1]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]], If[index1 === False && index2 === True,
Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[First[index],#1]]*
electrograviticTensor[[#1,Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]], Indeterminate]]]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["ReducedMatrixRepresentation"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, covariantRiemannTensor,
electrograviticTensor}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ]; covariantRiemannTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(matrixRepresentation[[index[[1]],#1]]*riemannTensor[[#1,
index[[2]],index[[3]],index[[4]]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 4]]]; electrograviticTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(covariantRiemannTensor[[First[index],First[#1],Last[index],
Last[#1]]]*timelikeCongruence[[First[#1]]]*timelikeCongruence[[Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
If[index1 === True && index2 === True, FullSimplify[electrograviticTensor], If[index1 === False && index2 === False,
FullSimplify[Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[First[index],
First[#1]]]*Inverse[matrixRepresentation][[Last[#1],Last[index]]]*electrograviticTensor[[First[#1],
Last[#1]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]]], If[index1 === True && index2 === False,
FullSimplify[Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[#1,
Last[index]]]*electrograviticTensor[[First[index],#1]] & ) /@ Range[Length[
matrixRepresentation]]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]]],
If[index1 === False && index2 === True, FullSimplify[
Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[First[index],#1]]*
electrograviticTensor[[#1,Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]]], Indeterminate]]]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["SymbolicMatrixRepresentation"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, covariantRiemannTensor,
electrograviticTensor}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(Inactive[D][newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] +
Inactive[D][newMatrixRepresentation[[index[[2]],#1]], newCoordinates[[index[[3]]]]] -
Inactive[D][newMatrixRepresentation[[index[[2]],index[[3]]]], newCoordinates[[#1]]]) & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> Inactive[D][christoffelSymbols[[index[[1]],
index[[2]],index[[4]]]], newCoordinates[[index[[3]]]]] - Inactive[D][christoffelSymbols[[index[[1]],
index[[2]],index[[3]]]], newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,
index[[3]]]]*christoffelSymbols[[#1,index[[2]],index[[4]]]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*
christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 4]]] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]; covariantRiemannTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(matrixRepresentation[[index[[1]],#1]]*riemannTensor[[#1,
index[[2]],index[[3]],index[[4]]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 4]]]; electrograviticTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(covariantRiemannTensor[[First[index],First[#1],Last[index],
Last[#1]]]*timelikeCongruence[[First[#1]]]*timelikeCongruence[[Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
If[index1 === True && index2 === True, electrograviticTensor, If[index1 === False && index2 === False,
Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[First[index],First[#1]]]*
Inverse[matrixRepresentation][[Last[#1],Last[index]]]*electrograviticTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]],
If[index1 === True && index2 === False, Normal[SparseArray[
(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[#1,Last[index]]]*electrograviticTensor[[
First[index],#1]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]], If[index1 === False && index2 === True,
Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[First[index],#1]]*
electrograviticTensor[[#1,Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]], Indeterminate]]]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["Trace"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, covariantRiemannTensor,
electrograviticTensor}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ]; covariantRiemannTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(matrixRepresentation[[index[[1]],#1]]*riemannTensor[[#1,
index[[2]],index[[3]],index[[4]]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 4]]]; electrograviticTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(covariantRiemannTensor[[First[index],First[#1],Last[index],
Last[#1]]]*timelikeCongruence[[First[#1]]]*timelikeCongruence[[Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*electrograviticTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && Length[coordinates] == Length[timelikeCongruence] &&
BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["ReducedTrace"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, covariantRiemannTensor,
electrograviticTensor}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ]; covariantRiemannTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(matrixRepresentation[[index[[1]],#1]]*riemannTensor[[#1,
index[[2]],index[[3]],index[[4]]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 4]]]; electrograviticTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(covariantRiemannTensor[[First[index],First[#1],Last[index],
Last[#1]]]*timelikeCongruence[[First[#1]]]*timelikeCongruence[[Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
FullSimplify[Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*electrograviticTensor[[First[#1],
Last[#1]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["SymbolicTrace"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, covariantRiemannTensor,
electrograviticTensor}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(Inactive[D][newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] +
Inactive[D][newMatrixRepresentation[[index[[2]],#1]], newCoordinates[[index[[3]]]]] -
Inactive[D][newMatrixRepresentation[[index[[2]],index[[3]]]], newCoordinates[[#1]]]) & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> Inactive[D][christoffelSymbols[[index[[1]],
index[[2]],index[[4]]]], newCoordinates[[index[[3]]]]] - Inactive[D][christoffelSymbols[[index[[1]],
index[[2]],index[[3]]]], newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,
index[[3]]]]*christoffelSymbols[[#1,index[[2]],index[[4]]]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*
christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 4]]] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]; covariantRiemannTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(matrixRepresentation[[index[[1]],#1]]*riemannTensor[[#1,
index[[2]],index[[3]],index[[4]]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 4]]]; electrograviticTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(covariantRiemannTensor[[First[index],First[#1],Last[index],
Last[#1]]]*timelikeCongruence[[First[#1]]]*timelikeCongruence[[Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*electrograviticTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && Length[coordinates] == Length[timelikeCongruence] &&
BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["MetricTensor"] :=
ResourceFunction["MetricTensor"][matrixRepresentation, coordinates, metricIndex1, metricIndex2] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["Coordinates"] :=
coordinates /; SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["CoordinateOneForms"] :=
(If[Head[#1] === Subscript, Subscript[StringJoin["\[FormalD]", ToString[First[#1]]], ToString[Last[#1]]],
If[Head[#1] === Superscript, Superscript[StringJoin["\[FormalD]", ToString[First[#1]]], ToString[Last[#1]]],
StringJoin["\[FormalD]", ToString[#1]]]] & ) /@ coordinates /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && Length[coordinates] == Length[timelikeCongruence] &&
BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["Indices"] :=
{index1, index2} /; SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["CovariantQ"] := If[index1 === True && index2 === True, True, False] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["ContravariantQ"] :=
If[index1 === False && index2 === False, True, False] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && Length[coordinates] == Length[timelikeCongruence] &&
BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["MixedQ"] :=
If[(index1 === True && index2 === False) || (index1 === False && index2 === True), True, False] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["Symbol"] :=
If[index1 === True && index2 === True, Subscript["\[FormalCapitalE]", "\[FormalMu]\[FormalNu]"], If[index1 === False && index2 === False,
Superscript["\[FormalCapitalE]", "\[FormalMu]\[FormalNu]"], If[index1 === True && index2 === False, Subsuperscript["\[FormalCapitalE]", "\[FormalMu]", "\[FormalNu]"],
If[index1 === False && index2 === True, Subsuperscript["\[FormalCapitalE]", "\[FormalNu]", "\[FormalMu]"], Indeterminate]]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["VanishingElectrograviticTensorQ"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, covariantRiemannTensor,
electrograviticTensor, fieldEquations}, newMatrixRepresentation = matrixRepresentation /.
(#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ]; covariantRiemannTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(matrixRepresentation[[index[[1]],#1]]*riemannTensor[[#1,
index[[2]],index[[3]],index[[4]]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 4]]]; electrograviticTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(covariantRiemannTensor[[First[index],First[#1],Last[index],
Last[#1]]]*timelikeCongruence[[First[#1]]]*timelikeCongruence[[Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
fieldEquations = FullSimplify[Thread[Catenate[electrograviticTensor] ==
Catenate[ConstantArray[0, {Length[matrixRepresentation], Length[matrixRepresentation]}]]]];
If[fieldEquations === True, True, If[fieldEquations === False, False,
If[Length[Select[fieldEquations, #1 === True & ]] == Length[matrixRepresentation]*Length[matrixRepresentation],
True, False]]]] /; SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] ==
2 && Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["VanishingElectrograviticTraceQ"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, covariantRiemannTensor,
electrograviticTensor}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ]; covariantRiemannTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(matrixRepresentation[[index[[1]],#1]]*riemannTensor[[#1,
index[[2]],index[[3]],index[[4]]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 4]]]; electrograviticTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(covariantRiemannTensor[[First[index],First[#1],Last[index],
Last[#1]]]*timelikeCongruence[[First[#1]]]*timelikeCongruence[[Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
FullSimplify[Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*electrograviticTensor[[First[#1],
Last[#1]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]] == 0] === True] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["VanishingElectrograviticTensorConditions"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, covariantRiemannTensor,
electrograviticTensor, fieldEquations}, newMatrixRepresentation = matrixRepresentation /.
(#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ]; covariantRiemannTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(matrixRepresentation[[index[[1]],#1]]*riemannTensor[[#1,
index[[2]],index[[3]],index[[4]]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 4]]]; electrograviticTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(covariantRiemannTensor[[First[index],First[#1],Last[index],
Last[#1]]]*timelikeCongruence[[First[#1]]]*timelikeCongruence[[Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
fieldEquations = FullSimplify[Thread[Catenate[electrograviticTensor] ==
Catenate[ConstantArray[0, {Length[matrixRepresentation], Length[matrixRepresentation]}]]]];
If[fieldEquations === True, {}, If[fieldEquations === False, Indeterminate,
If[Length[Select[fieldEquations, #1 === False & ]] > 0, Indeterminate,
DeleteDuplicates[Reverse /@ Sort /@ Select[fieldEquations, #1 =!= True & ]]]]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
timelikeCongruence_List, index1_, index2_]["VanishingElectrograviticTraceCondition"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, covariantRiemannTensor,
electrograviticTensor, fieldEquation}, newMatrixRepresentation = matrixRepresentation /.
(#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ]; covariantRiemannTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(matrixRepresentation[[index[[1]],#1]]*riemannTensor[[#1,
index[[2]],index[[3]],index[[4]]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 4]]]; electrograviticTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(covariantRiemannTensor[[First[index],First[#1],Last[index],
Last[#1]]]*timelikeCongruence[[First[#1]]]*timelikeCongruence[[Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
fieldEquation = FullSimplify[Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*
electrograviticTensor[[First[#1],Last[#1]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]] == 0];
If[fieldEquation === False, Indeterminate, fieldEquation]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && Length[coordinates] == Length[timelikeCongruence] &&
BooleanQ[index1] && BooleanQ[index2]
ElectrograviticTensor /: MakeBoxes[electrograviticTensor:ElectrograviticTensor[(metricTensor_)[matrixRepresentation_List,
coordinates_List, metricIndex1_, metricIndex2_], timelikeCongruence_List, index1_, index2_], format_] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, covariantRiemannTensor,
tensorRepresentation, matrixForm, type, symbol, dimensions, eigenvalues, positiveEigenvalues, negativeEigenvalues,
signature, icon}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[1]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]]; riemannTensor =
Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],index[[4]]]],
newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] - Total[
(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ]; covariantRiemannTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(matrixRepresentation[[index[[1]],#1]]*riemannTensor[[#1,
index[[2]],index[[3]],index[[4]]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 4]]]; tensorRepresentation =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(covariantRiemannTensor[[First[index],First[#1],
Last[index],Last[#1]]]*timelikeCongruence[[First[#1]]]*timelikeCongruence[[Last[#1]]] & ) /@ Tuples[
Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
If[index1 === True && index2 === True, matrixForm = tensorRepresentation; type = "Covariant";
symbol = Subscript["\[FormalCapitalE]", "\[FormalMu]\[FormalNu]"], If[index1 === False && index2 === False,
matrixForm = Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[First[index],
First[#1]]]*Inverse[matrixRepresentation][[Last[#1],Last[index]]]*tensorRepresentation[[First[#1],
Last[#1]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]]; type = "Contravariant";
symbol = Superscript["\[FormalCapitalE]", "\[FormalMu]\[FormalNu]"], If[index1 === True && index2 === False,
matrixForm = Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[#1,
Last[index]]]*tensorRepresentation[[First[index],#1]] & ) /@ Range[Length[
matrixRepresentation]]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]]; type = "Mixed";
symbol = Subsuperscript["\[FormalCapitalE]", "\[FormalMu]", "\[FormalNu]"], If[index1 === False && index2 === True,
matrixForm = Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[
First[index],#1]]*tensorRepresentation[[#1,Last[index]]] & ) /@ Range[Length[
matrixRepresentation]]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]]; type = "Mixed";
symbol = Subsuperscript["\[FormalCapitalE]", "\[FormalNu]", "\[FormalMu]"], matrixForm = ConstantArray[Indeterminate,
{Length[matrixRepresentation], Length[matrixRepresentation]}]; type = Indeterminate;
symbol = Indeterminate]]]]; dimensions = Length[matrixRepresentation];
eigenvalues = Eigenvalues[matrixRepresentation]; positiveEigenvalues = Select[eigenvalues, #1 > 0 & ];
negativeEigenvalues = Select[eigenvalues, #1 < 0 & ];
If[Length[positiveEigenvalues] + Length[negativeEigenvalues] == Length[matrixRepresentation],
If[Length[positiveEigenvalues] == Length[matrixRepresentation] || Length[negativeEigenvalues] ==
Length[matrixRepresentation], signature = "Riemannian", If[Length[positiveEigenvalues] == 1 ||
Length[negativeEigenvalues] == 1, signature = "Lorentzian", signature = "Pseudo-Riemannian"]],
signature = Indeterminate]; icon = MatrixPlot[matrixForm, ImageSize ->
Dynamic[{Automatic, 3.5*(CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[Magnification])}], Frame -> False,
FrameTicks -> None]; BoxForm`ArrangeSummaryBox["ElectrograviticTensor", electrograviticTensor, icon,
{{BoxForm`SummaryItem[{"Type: ", type}], BoxForm`SummaryItem[{"Symbol: ", symbol}]},
{BoxForm`SummaryItem[{"Dimensions: ", dimensions}], BoxForm`SummaryItem[{"Signature: ", signature}]}},
{{BoxForm`SummaryItem[{"Coordinates: ", coordinates}]}}, format, "Interpretable" -> Automatic]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
Length[coordinates] == Length[timelikeCongruence] && BooleanQ[index1] && BooleanQ[index2]