-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathEinsteinTensor.wl
1247 lines (1246 loc) · 122 KB
/
EinsteinTensor.wl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* ::Package:: *)
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, index1_, index2_]] :=
EinsteinTensor[ResourceFunction["MetricTensor"][matrixRepresentation, coordinates, index1, index2], True, True] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, index1_, index2_], newCoordinates_List] :=
EinsteinTensor[ResourceFunction["MetricTensor"][matrixRepresentation /. Thread[coordinates -> newCoordinates],
newCoordinates, index1, index2], True, True] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
Length[newCoordinates] == Length[matrixRepresentation] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_],
newCoordinates_List, index1_, index2_] :=
EinsteinTensor[ResourceFunction["MetricTensor"][matrixRepresentation /. Thread[coordinates -> newCoordinates],
newCoordinates, metricIndex1, metricIndex2], index1, index2] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
Length[newCoordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["MatrixRepresentation"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols,
riemannTensor, ricciTensor, ricciScalar, einsteinTensor},
newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*matrixRepresentation; If[index1 === True && index2 === True, einsteinTensor,
If[index1 === False && index2 === False,
Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[First[index],First[#1]]]*
Inverse[matrixRepresentation][[Last[#1],Last[index]]]*einsteinTensor[[First[#1],Last[#1]]] & ) /@ Tuples[
Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]],
If[index1 === True && index2 === False, Normal[SparseArray[
(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[#1,Last[index]]]*einsteinTensor[[
First[index],#1]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]], If[index1 === False && index2 === True,
Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[First[index],#1]]*
einsteinTensor[[#1,Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]], Indeterminate]]]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["ReducedMatrixRepresentation"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, ricciTensor, ricciScalar,
einsteinTensor}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*matrixRepresentation; If[index1 === True && index2 === True,
FullSimplify[einsteinTensor], If[index1 === False && index2 === False,
FullSimplify[Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[First[index],
First[#1]]]*Inverse[matrixRepresentation][[Last[#1],Last[index]]]*einsteinTensor[[First[#1],
Last[#1]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]]], If[index1 === True && index2 === False,
FullSimplify[Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[#1,
Last[index]]]*einsteinTensor[[First[index],#1]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]]], If[index1 === False && index2 === True,
FullSimplify[Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[
First[index],#1]]*einsteinTensor[[#1,Last[index]]] & ) /@ Range[Length[
matrixRepresentation]]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]]],
Indeterminate]]]]] /; SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] ==
2 && Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["SymbolicMatrixRepresentation"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, ricciTensor, ricciScalar,
einsteinTensor}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(Inactive[D][newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] +
Inactive[D][newMatrixRepresentation[[index[[2]],#1]], newCoordinates[[index[[3]]]]] -
Inactive[D][newMatrixRepresentation[[index[[2]],index[[3]]]], newCoordinates[[#1]]]) & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> Inactive[D][christoffelSymbols[[index[[1]],
index[[2]],index[[4]]]], newCoordinates[[index[[3]]]]] - Inactive[D][christoffelSymbols[[index[[1]],
index[[2]],index[[3]]]], newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,
index[[3]]]]*christoffelSymbols[[#1,index[[2]],index[[4]]]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*
christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 4]]] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]; ricciTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,Last[index]]] & ) /@
Range[Length[matrixRepresentation]]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*matrixRepresentation; If[index1 === True && index2 === True, einsteinTensor,
If[index1 === False && index2 === False,
Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[First[index],First[#1]]]*
Inverse[matrixRepresentation][[Last[#1],Last[index]]]*einsteinTensor[[First[#1],Last[#1]]] & ) /@ Tuples[
Range[Length[matrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]],
If[index1 === True && index2 === False, Normal[SparseArray[
(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[#1,Last[index]]]*einsteinTensor[[
First[index],#1]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]], If[index1 === False && index2 === True,
Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[matrixRepresentation][[First[index],#1]]*
einsteinTensor[[#1,Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]], Indeterminate]]]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["Trace"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, ricciTensor,
ricciScalar, einsteinTensor}, newMatrixRepresentation = matrixRepresentation /.
(#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*matrixRepresentation;
Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*einsteinTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["ReducedTrace"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor,
ricciTensor, ricciScalar, einsteinTensor},
newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*matrixRepresentation;
FullSimplify[Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*einsteinTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["SymbolicTrace"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor,
ricciTensor, ricciScalar, einsteinTensor},
newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(Inactive[D][newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] +
Inactive[D][newMatrixRepresentation[[index[[2]],#1]], newCoordinates[[index[[3]]]]] -
Inactive[D][newMatrixRepresentation[[index[[2]],index[[3]]]], newCoordinates[[#1]]]) & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> Inactive[D][christoffelSymbols[[index[[1]],
index[[2]],index[[4]]]], newCoordinates[[index[[3]]]]] - Inactive[D][christoffelSymbols[[index[[1]],
index[[2]],index[[3]]]], newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,
index[[3]]]]*christoffelSymbols[[#1,index[[2]],index[[4]]]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*
christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 4]]] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]; ricciTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,Last[index]]] & ) /@
Range[Length[matrixRepresentation]]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*matrixRepresentation;
Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*einsteinTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["MetricTensor"] := ResourceFunction["MetricTensor"][matrixRepresentation, coordinates, metricIndex1,
metricIndex2] /; SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["Coordinates"] := coordinates /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["CoordinateOneForms"] :=
(If[Head[#1] === Subscript, Subscript[StringJoin["\[FormalD]", ToString[First[#1]]], ToString[Last[#1]]],
If[Head[#1] === Superscript, Superscript[StringJoin["\[FormalD]", ToString[First[#1]]], ToString[Last[#1]]],
StringJoin["\[FormalD]", ToString[#1]]]] & ) /@ coordinates /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["Indices"] := {index1, index2} /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["CovariantQ"] := If[index1 === True && index2 === True, True, False] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["ContravariantQ"] := If[index1 === False && index2 === False, True, False] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["MixedQ"] := If[(index1 === True && index2 === False) || (index1 === False && index2 === True), True,
False] /; SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["Symbol"] := If[index1 === True && index2 === True, Subscript["\[FormalCapitalG]", "\[FormalMu]\[FormalNu]"],
If[index1 === False && index2 === False, Superscript["\[FormalCapitalG]", "\[FormalMu]\[FormalNu]"], If[index1 === True && index2 === False,
Subsuperscript["\[FormalCapitalG]", "\[FormalMu]", "\[FormalNu]"], If[index1 === False && index2 === True, Subsuperscript["\[FormalCapitalG]", "\[FormalNu]", "\[FormalMu]"],
Indeterminate]]]] /; SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] ==
2 && Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["EinsteinFlatQ"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor,
ricciTensor, ricciScalar, einsteinTensor, fieldEquations},
newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*matrixRepresentation; fieldEquations =
FullSimplify[Thread[Catenate[einsteinTensor] == Catenate[ConstantArray[0, {Length[matrixRepresentation],
Length[matrixRepresentation]}]]]]; If[fieldEquations === True, True, If[fieldEquations === False, False,
If[Length[Select[fieldEquations, #1 === True & ]] == Length[matrixRepresentation]*Length[matrixRepresentation],
True, False]]]] /; SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] ==
2 && Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["VanishingEinsteinTraceQ"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols,
riemannTensor, ricciTensor, ricciScalar, einsteinTensor},
newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*matrixRepresentation;
FullSimplify[Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*einsteinTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]] == 0] === True] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["EinsteinFlatConditions"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols,
riemannTensor, ricciTensor, ricciScalar, einsteinTensor, fieldEquations},
newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*matrixRepresentation; fieldEquations =
FullSimplify[Thread[Catenate[einsteinTensor] == Catenate[ConstantArray[0, {Length[matrixRepresentation],
Length[matrixRepresentation]}]]]]; If[fieldEquations === True, {}, If[fieldEquations === False,
Indeterminate, If[Length[Select[fieldEquations, #1 === False & ]] > 0, Indeterminate,
DeleteDuplicates[Reverse /@ Sort /@ Select[fieldEquations, #1 =!= True & ]]]]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["VanishingEinsteinTraceCondition"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, ricciTensor, ricciScalar,
einsteinTensor, fieldEquation}, newMatrixRepresentation = matrixRepresentation /.
(#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*matrixRepresentation; fieldEquation =
FullSimplify[Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*einsteinTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]] == 0]; If[fieldEquation === False, Indeterminate,
fieldEquation]] /; SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["CovariantDerivatives"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols,
riemannTensor, ricciTensor, ricciScalar, einsteinTensor, newEinsteinTensor},
newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],index[[
4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[newMatrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*newMatrixRepresentation; If[index1 === True && index2 === True,
newEinsteinTensor = einsteinTensor; Association[
(Module[{index = #1}, StringJoin[ToString[Subscript["\[Del]", ToString[newCoordinates[[index[[1]]]], StandardForm]],
StandardForm], ToString[Subscript["\[FormalCapitalG]", StringJoin[ToString[newCoordinates[[index[[2]]]], StandardForm],
ToString[newCoordinates[[index[[3]]]], StandardForm]]], StandardForm]] ->
D[newEinsteinTensor[[index[[2]],index[[3]]]], newCoordinates[[index[[1]]]]] -
Total[(christoffelSymbols[[#1,index[[1]],index[[2]]]]*newEinsteinTensor[[#1,index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[#1,index[[1]],index[[3]]]]*
newEinsteinTensor[[index[[2]],#1]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]], If[index1 === False && index2 === False,
newEinsteinTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[newMatrixRepresentation][[
First[index],First[#1]]]*Inverse[newMatrixRepresentation][[Last[#1],Last[index]]]*einsteinTensor[[
First[#1],Last[#1]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 2]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]];
Association[(Module[{index = #1}, StringJoin[ToString[Subscript["\[Del]", ToString[newCoordinates[[index[[1]]]],
StandardForm]], StandardForm], ToString[Superscript["\[FormalCapitalG]", StringJoin[ToString[newCoordinates[[
index[[2]]]], StandardForm], ToString[newCoordinates[[index[[3]]]], StandardForm]]],
StandardForm]] -> D[newEinsteinTensor[[index[[2]],index[[3]]]], newCoordinates[[index[[1]]]]] + Total[
(christoffelSymbols[[index[[2]],index[[1]],#1]]*newEinsteinTensor[[#1,index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]] + Total[(christoffelSymbols[[index[[3]],index[[1]],#1]]*
newEinsteinTensor[[index[[2]],#1]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]], If[index1 === True && index2 === False,
newEinsteinTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[newMatrixRepresentation][[#1,
Last[index]]]*einsteinTensor[[First[index],#1]] & ) /@ Range[Length[
newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 2]]];
Association[(Module[{index = #1}, StringJoin[ToString[Subscript["\[Del]", ToString[newCoordinates[[index[[1]]]],
StandardForm]], StandardForm], ToString[Subsuperscript["\[FormalCapitalG]", ToString[newCoordinates[[index[[2]]]],
StandardForm], ToString[newCoordinates[[index[[3]]]], StandardForm]], StandardForm]] ->
D[newEinsteinTensor[[index[[2]],index[[3]]]], newCoordinates[[index[[1]]]]] +
Total[(christoffelSymbols[[index[[3]],index[[1]],#1]]*newEinsteinTensor[[index[[2]],#1]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[#1,index[[1]],index[[2]]]]*
newEinsteinTensor[[#1,index[[3]]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]], If[index1 === False && index2 === True,
newEinsteinTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[newMatrixRepresentation][[
First[index],#1]]*einsteinTensor[[#1,Last[index]]] & ) /@ Range[Length[
newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 2]]];
Association[(Module[{index = #1}, StringJoin[ToString[Subscript["\[Del]", ToString[newCoordinates[[index[[1]]]],
StandardForm]], StandardForm], ToString[Subsuperscript["\[FormalCapitalG]", ToString[newCoordinates[[index[[3]]]],
StandardForm], ToString[newCoordinates[[index[[2]]]], StandardForm]], StandardForm]] ->
D[newEinsteinTensor[[index[[2]],index[[3]]]], newCoordinates[[index[[1]]]]] +
Total[(christoffelSymbols[[index[[2]],index[[1]],#1]]*newEinsteinTensor[[#1,index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[#1,index[[1]],index[[3]]]]*
newEinsteinTensor[[index[[2]],#1]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]]]]]]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["ReducedCovariantDerivatives"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, ricciTensor, ricciScalar,
einsteinTensor, newEinsteinTensor}, newMatrixRepresentation = matrixRepresentation /.
(#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],index[[
4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[newMatrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*newMatrixRepresentation; If[index1 === True && index2 === True,
newEinsteinTensor = einsteinTensor; Association[
(Module[{index = #1}, StringJoin[ToString[Subscript["\[Del]", ToString[newCoordinates[[index[[1]]]], StandardForm]],
StandardForm], ToString[Subscript["\[FormalCapitalG]", StringJoin[ToString[newCoordinates[[index[[2]]]], StandardForm],
ToString[newCoordinates[[index[[3]]]], StandardForm]]], StandardForm]] ->
FullSimplify[D[newEinsteinTensor[[index[[2]],index[[3]]]], newCoordinates[[index[[1]]]]] - Total[
(christoffelSymbols[[#1,index[[1]],index[[2]]]]*newEinsteinTensor[[#1,index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[#1,index[[1]],index[[3]]]]*
newEinsteinTensor[[index[[2]],#1]] & ) /@ Range[Length[newMatrixRepresentation]]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]], If[index1 === False && index2 === False,
newEinsteinTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[newMatrixRepresentation][[
First[index],First[#1]]]*Inverse[newMatrixRepresentation][[Last[#1],Last[index]]]*einsteinTensor[[
First[#1],Last[#1]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 2]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]];
Association[(Module[{index = #1}, StringJoin[ToString[Subscript["\[Del]", ToString[newCoordinates[[index[[1]]]],
StandardForm]], StandardForm], ToString[Superscript["\[FormalCapitalG]", StringJoin[ToString[newCoordinates[[
index[[2]]]], StandardForm], ToString[newCoordinates[[index[[3]]]], StandardForm]]],
StandardForm]] -> FullSimplify[D[newEinsteinTensor[[index[[2]],index[[3]]]], newCoordinates[[
index[[1]]]]] + Total[(christoffelSymbols[[index[[2]],index[[1]],#1]]*newEinsteinTensor[[#1,
index[[3]]]] & ) /@ Range[Length[newMatrixRepresentation]]] + Total[
(christoffelSymbols[[index[[3]],index[[1]],#1]]*newEinsteinTensor[[index[[2]],#1]] & ) /@
Range[Length[newMatrixRepresentation]]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 3] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ]], If[index1 === True && index2 === False,
newEinsteinTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[newMatrixRepresentation][[#1,
Last[index]]]*einsteinTensor[[First[index],#1]] & ) /@ Range[Length[
newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 2]]];
Association[(Module[{index = #1}, StringJoin[ToString[Subscript["\[Del]", ToString[newCoordinates[[index[[1]]]],
StandardForm]], StandardForm], ToString[Subsuperscript["\[FormalCapitalG]", ToString[newCoordinates[[index[[2]]]],
StandardForm], ToString[newCoordinates[[index[[3]]]], StandardForm]], StandardForm]] -> FullSimplify[
D[newEinsteinTensor[[index[[2]],index[[3]]]], newCoordinates[[index[[1]]]]] +
Total[(christoffelSymbols[[index[[3]],index[[1]],#1]]*newEinsteinTensor[[index[[2]],#1]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[#1,index[[1]],index[[2]]]]*
newEinsteinTensor[[#1,index[[3]]]] & ) /@ Range[Length[newMatrixRepresentation]]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]], If[index1 === False && index2 === True,
newEinsteinTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[newMatrixRepresentation][[
First[index],#1]]*einsteinTensor[[#1,Last[index]]] & ) /@ Range[Length[
newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 2]]];
Association[(Module[{index = #1}, StringJoin[ToString[Subscript["\[Del]", ToString[newCoordinates[[index[[1]]]],
StandardForm]], StandardForm], ToString[Subsuperscript["\[FormalCapitalG]", ToString[newCoordinates[[index[[3]]]],
StandardForm], ToString[newCoordinates[[index[[2]]]], StandardForm]], StandardForm]] ->
FullSimplify[D[newEinsteinTensor[[index[[2]],index[[3]]]], newCoordinates[[index[[1]]]]] +
Total[(christoffelSymbols[[index[[2]],index[[1]],#1]]*newEinsteinTensor[[#1,index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[#1,index[[1]],index[[3]]]]*
newEinsteinTensor[[index[[2]],#1]] & ) /@ Range[Length[newMatrixRepresentation]]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]]]]]]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["SymbolicCovariantDerivatives"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, ricciTensor, ricciScalar,
einsteinTensor, newEinsteinTensor}, newMatrixRepresentation = matrixRepresentation /.
(#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(Inactive[D][newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] +
Inactive[D][newMatrixRepresentation[[index[[2]],#1]], newCoordinates[[index[[3]]]]] -
Inactive[D][newMatrixRepresentation[[index[[2]],index[[3]]]], newCoordinates[[#1]]]) & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> Inactive[D][christoffelSymbols[[index[[1]],index[[
2]],index[[4]]]], newCoordinates[[index[[3]]]]] - Inactive[D][christoffelSymbols[[index[[1]],index[[
2]],index[[3]]]], newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*
christoffelSymbols[[#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[newMatrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*newMatrixRepresentation; If[index1 === True && index2 === True,
newEinsteinTensor = einsteinTensor; Association[
(Module[{index = #1}, StringJoin[ToString[Subscript["\[Del]", ToString[newCoordinates[[index[[1]]]], StandardForm]],
StandardForm], ToString[Subscript["\[FormalCapitalG]", StringJoin[ToString[newCoordinates[[index[[2]]]], StandardForm],
ToString[newCoordinates[[index[[3]]]], StandardForm]]], StandardForm]] ->
Inactive[D][newEinsteinTensor[[index[[2]],index[[3]]]], newCoordinates[[index[[1]]]]] -
Total[(christoffelSymbols[[#1,index[[1]],index[[2]]]]*newEinsteinTensor[[#1,index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[#1,index[[1]],index[[3]]]]*
newEinsteinTensor[[index[[2]],#1]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]], If[index1 === False && index2 === False,
newEinsteinTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[newMatrixRepresentation][[
First[index],First[#1]]]*Inverse[newMatrixRepresentation][[Last[#1],Last[index]]]*einsteinTensor[[
First[#1],Last[#1]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 2]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]];
Association[(Module[{index = #1}, StringJoin[ToString[Subscript["\[Del]", ToString[newCoordinates[[index[[1]]]],
StandardForm]], StandardForm], ToString[Superscript["\[FormalCapitalG]", StringJoin[ToString[newCoordinates[[
index[[2]]]], StandardForm], ToString[newCoordinates[[index[[3]]]], StandardForm]]],
StandardForm]] -> Inactive[D][newEinsteinTensor[[index[[2]],index[[3]]]], newCoordinates[[index[[1]]]]] +
Total[(christoffelSymbols[[index[[2]],index[[1]],#1]]*newEinsteinTensor[[#1,index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]] + Total[(christoffelSymbols[[index[[3]],index[[1]],#1]]*
newEinsteinTensor[[index[[2]],#1]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]], If[index1 === True && index2 === False,
newEinsteinTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[newMatrixRepresentation][[#1,
Last[index]]]*einsteinTensor[[First[index],#1]] & ) /@ Range[Length[
newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 2]]];
Association[(Module[{index = #1}, StringJoin[ToString[Subscript["\[Del]", ToString[newCoordinates[[index[[1]]]],
StandardForm]], StandardForm], ToString[Subsuperscript["\[FormalCapitalG]", ToString[newCoordinates[[index[[2]]]],
StandardForm], ToString[newCoordinates[[index[[3]]]], StandardForm]], StandardForm]] ->
Inactive[D][newEinsteinTensor[[index[[2]],index[[3]]]], newCoordinates[[index[[1]]]]] +
Total[(christoffelSymbols[[index[[3]],index[[1]],#1]]*newEinsteinTensor[[index[[2]],#1]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[#1,index[[1]],index[[2]]]]*
newEinsteinTensor[[#1,index[[3]]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]], If[index1 === False && index2 === True,
newEinsteinTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[newMatrixRepresentation][[
First[index],#1]]*einsteinTensor[[#1,Last[index]]] & ) /@ Range[Length[
newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 2]]];
Association[(Module[{index = #1}, StringJoin[ToString[Subscript["\[Del]", ToString[newCoordinates[[index[[1]]]],
StandardForm]], StandardForm], ToString[Subsuperscript["\[FormalCapitalG]", ToString[newCoordinates[[index[[3]]]],
StandardForm], ToString[newCoordinates[[index[[2]]]], StandardForm]], StandardForm]] ->
Inactive[D][newEinsteinTensor[[index[[2]],index[[3]]]], newCoordinates[[index[[1]]]]] +
Total[(christoffelSymbols[[index[[2]],index[[1]],#1]]*newEinsteinTensor[[#1,index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[#1,index[[1]],index[[3]]]]*
newEinsteinTensor[[index[[2]],#1]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]]]]]]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["BianchiIdentities"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor,
ricciTensor, ricciScalar, einsteinTensor, contravariantEinsteinTensor},
newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],index[[
4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[newMatrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*newMatrixRepresentation; contravariantEinsteinTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[newMatrixRepresentation][[First[index],First[#1]]]*
Inverse[newMatrixRepresentation][[Last[#1],Last[index]]]*einsteinTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]],
2]]];
(Module[{index = #1}, Total[(Module[{nestedIndex = #1}, D[contravariantEinsteinTensor[[nestedIndex,index]],
newCoordinates[[nestedIndex]]] + Total[(christoffelSymbols[[nestedIndex,nestedIndex,#1]]*
contravariantEinsteinTensor[[#1,index]] & ) /@ Range[Length[newMatrixRepresentation]]] + Total[
(christoffelSymbols[[index,nestedIndex,#1]]*contravariantEinsteinTensor[[nestedIndex,#1]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Range[Length[newMatrixRepresentation]]] == 0] & ) /@
Range[Length[newMatrixRepresentation]] /. (ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["SymbolicBianchiIdentities"] :=
Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor, ricciTensor, ricciScalar,
einsteinTensor, contravariantEinsteinTensor},
newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(Inactive[D][newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] +
Inactive[D][newMatrixRepresentation[[index[[2]],#1]], newCoordinates[[index[[3]]]]] -
Inactive[D][newMatrixRepresentation[[index[[2]],index[[3]]]], newCoordinates[[#1]]]) & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> Inactive[D][christoffelSymbols[[index[[1]],index[[
2]],index[[4]]]], newCoordinates[[index[[3]]]]] - Inactive[D][christoffelSymbols[[index[[1]],index[[
2]],index[[3]]]], newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*
christoffelSymbols[[#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[newMatrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*newMatrixRepresentation; contravariantEinsteinTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(Inverse[newMatrixRepresentation][[First[index],First[#1]]]*
Inverse[newMatrixRepresentation][[Last[#1],Last[index]]]*einsteinTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]],
2]]];
(Module[{index = #1}, Total[(Module[{nestedIndex = #1}, Inactive[D][contravariantEinsteinTensor[[nestedIndex,
index]], newCoordinates[[nestedIndex]]] + Total[(christoffelSymbols[[nestedIndex,nestedIndex,#1]]*
contravariantEinsteinTensor[[#1,index]] & ) /@ Range[Length[newMatrixRepresentation]]] + Total[
(christoffelSymbols[[index,nestedIndex,#1]]*contravariantEinsteinTensor[[nestedIndex,#1]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Range[Length[newMatrixRepresentation]]] == 0] & ) /@
Range[Length[newMatrixRepresentation]] /. (ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["Dimensions"] := Length[matrixRepresentation] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["SymmetricQ"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor,
ricciTensor, ricciScalar}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; SymmetricMatrixQ[
ricciTensor - (1/2)*ricciScalar*matrixRepresentation]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["DiagonalQ"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor,
ricciTensor, ricciScalar}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; DiagonalMatrixQ[
ricciTensor - (1/2)*ricciScalar*matrixRepresentation]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["Signature"] := Module[{eigenvalues, positiveEigenvalues, negativeEigenvalues},
eigenvalues = Eigenvalues[matrixRepresentation]; positiveEigenvalues = Select[eigenvalues, #1 > 0 & ];
negativeEigenvalues = Select[eigenvalues, #1 < 0 & ];
If[Length[positiveEigenvalues] + Length[negativeEigenvalues] == Length[matrixRepresentation],
Join[ConstantArray[-1, Length[negativeEigenvalues]], ConstantArray[1, Length[positiveEigenvalues]]],
Indeterminate]] /; SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["RiemannianQ"] := Module[{eigenvalues, positiveEigenvalues, negativeEigenvalues},
eigenvalues = Eigenvalues[matrixRepresentation]; positiveEigenvalues = Select[eigenvalues, #1 > 0 & ];
negativeEigenvalues = Select[eigenvalues, #1 < 0 & ];
If[Length[positiveEigenvalues] + Length[negativeEigenvalues] == Length[matrixRepresentation],
If[Length[positiveEigenvalues] == Length[matrixRepresentation] || Length[negativeEigenvalues] ==
Length[matrixRepresentation], True, False], Indeterminate]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["PseudoRiemannianQ"] := Module[{eigenvalues, positiveEigenvalues, negativeEigenvalues},
eigenvalues = Eigenvalues[matrixRepresentation]; positiveEigenvalues = Select[eigenvalues, #1 > 0 & ];
negativeEigenvalues = Select[eigenvalues, #1 < 0 & ];
If[Length[positiveEigenvalues] + Length[negativeEigenvalues] == Length[matrixRepresentation],
If[Length[positiveEigenvalues] == Length[matrixRepresentation] || Length[negativeEigenvalues] ==
Length[matrixRepresentation], False, True], Indeterminate]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["LorentzianQ"] := Module[{eigenvalues, positiveEigenvalues, negativeEigenvalues},
eigenvalues = Eigenvalues[matrixRepresentation]; positiveEigenvalues = Select[eigenvalues, #1 > 0 & ];
negativeEigenvalues = Select[eigenvalues, #1 < 0 & ];
If[Length[positiveEigenvalues] + Length[negativeEigenvalues] == Length[matrixRepresentation],
If[Length[positiveEigenvalues] == 1 || Length[negativeEigenvalues] == 1, True, False], Indeterminate]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["RiemannianConditions"] := Module[{eigenvalues, riemannianConditions},
eigenvalues = Eigenvalues[matrixRepresentation]; riemannianConditions = FullSimplify[(#1 > 0 & ) /@ eigenvalues];
If[riemannianConditions === True, {}, If[riemannianConditions === False, Indeterminate,
If[Length[Select[riemannianConditions, #1 === False & ]] > 0, Indeterminate,
DeleteDuplicates[Select[riemannianConditions, #1 =!= True & ]]]]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["PseudoRiemannianConditions"] := Module[{eigenvalues, pseudoRiemannianConditions},
eigenvalues = Eigenvalues[matrixRepresentation]; pseudoRiemannianConditions =
FullSimplify[(#1 != 0 & ) /@ eigenvalues]; If[pseudoRiemannianConditions === True, {},
If[pseudoRiemannianConditions === False, Indeterminate,
If[Length[Select[pseudoRiemannianConditions, #1 === False & ]] > 0, Indeterminate,
DeleteDuplicates[Reverse /@ Sort /@ Select[pseudoRiemannianConditions, #1 =!= True & ]]]]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["LorentzianConditions"] := Module[{eigensystem, eigenvalues, eigenvectors, timeCoordinate,
lorentzianConditions}, eigensystem = Eigensystem[matrixRepresentation]; eigenvalues = First[eigensystem];
eigenvectors = Last[eigensystem];
If[Length[Position[eigenvectors, Join[{1}, ConstantArray[0, Length[coordinates] - 1]]]] > 0,
timeCoordinate = First[First[Position[eigenvectors, Join[{1}, ConstantArray[0, Length[coordinates] - 1]]]]];
lorentzianConditions = FullSimplify[(If[#1 == timeCoordinate, eigenvalues[[#1]] < 0, eigenvalues[[#1]] > 0] & ) /@
Range[Length[eigenvalues]]]; If[lorentzianConditions === True, {}, If[lorentzianConditions === False,
Indeterminate, If[Length[Select[lorentzianConditions, #1 === False & ]] > 0, Indeterminate,
DeleteDuplicates[Select[lorentzianConditions, #1 =!= True & ]]]]], Indeterminate]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["CurvatureSingularities"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols,
riemannTensor, ricciTensor, ricciScalar, einsteinTensor},
newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],index[[
4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[newMatrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*newMatrixRepresentation;
Quiet[DeleteDuplicates[Catenate[(If[Head[Solve[#1, newCoordinates]] === Solve, {{#1}},
Solve[#1, newCoordinates]] & ) /@ Flatten[{FunctionSingularities[Catenate[FullSimplify[einsteinTensor]],
newCoordinates] /. Or -> List}]]]] /. (ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["TraceSingularities"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor,
ricciTensor, ricciScalar, einsteinTensor, einsteinTrace},
newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],index[[
4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[newMatrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 2]]; einsteinTensor =
ricciTensor - (1/2)*ricciScalar*newMatrixRepresentation;
einsteinTrace = Total[(Inverse[newMatrixRepresentation][[First[#1],Last[#1]]]*einsteinTensor[[First[#1],
Last[#1]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 2]];
Quiet[DeleteDuplicates[Catenate[(If[Head[Solve[#1, newCoordinates]] === Solve, {{#1}},
Solve[#1, newCoordinates]] & ) /@ Flatten[{FunctionSingularities[FullSimplify[einsteinTrace],
newCoordinates] /. Or -> List}]]]] /. (ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["Determinant"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor,
ricciTensor, ricciScalar}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; Det[ricciTensor - (1/2)*ricciScalar*matrixRepresentation]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["ReducedDeterminant"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor,
ricciTensor, ricciScalar}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]];
FullSimplify[Det[ricciTensor - (1/2)*ricciScalar*matrixRepresentation]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["SymbolicDeterminant"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols,
riemannTensor, ricciTensor, ricciScalar},
newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@ Select[coordinates, StringQ];
christoffelSymbols = Normal[SparseArray[
(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(Inactive[D][newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] +
Inactive[D][newMatrixRepresentation[[index[[2]],#1]], newCoordinates[[index[[3]]]]] -
Inactive[D][newMatrixRepresentation[[index[[2]],index[[3]]]], newCoordinates[[#1]]]) & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> Inactive[D][christoffelSymbols[[index[[1]],
index[[2]],index[[4]]]], newCoordinates[[index[[3]]]]] - Inactive[D][christoffelSymbols[[index[[1]],
index[[2]],index[[3]]]], newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,
index[[3]]]]*christoffelSymbols[[#1,index[[2]],index[[4]]]] & ) /@
Range[Length[newMatrixRepresentation]]] - Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*
christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 4]]] /. (ToExpression[#1] -> #1 & ) /@
Select[coordinates, StringQ]; ricciTensor =
Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,Last[index]]] & ) /@
Range[Length[matrixRepresentation]]]] & ) /@ Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]; Det[ricciTensor - (1/2)*ricciScalar*matrixRepresentation]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["Eigenvalues"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor,
ricciTensor, ricciScalar}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]];
Eigenvalues[ricciTensor - (1/2)*ricciScalar*matrixRepresentation]] /; SymbolName[metricTensor] === "MetricTensor" &&
Length[Dimensions[matrixRepresentation]] == 2 && Length[coordinates] == Length[matrixRepresentation] &&
BooleanQ[metricIndex1] && BooleanQ[metricIndex2] && BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_, coordinates_List, metricIndex1_, metricIndex2_], index1_, index2_][
"ReducedEigenvalues"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor,
ricciTensor, ricciScalar}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]];
FullSimplify[Eigenvalues[ricciTensor - (1/2)*ricciScalar*matrixRepresentation]]] /;
SymbolName[metricTensor] === "MetricTensor" && Length[Dimensions[matrixRepresentation]] == 2 &&
Length[coordinates] == Length[matrixRepresentation] && BooleanQ[metricIndex1] && BooleanQ[metricIndex2] &&
BooleanQ[index1] && BooleanQ[index2]
EinsteinTensor[(metricTensor_)[matrixRepresentation_List, coordinates_List, metricIndex1_, metricIndex2_], index1_,
index2_]["Eigenvectors"] := Module[{newMatrixRepresentation, newCoordinates, christoffelSymbols, riemannTensor,
ricciTensor, ricciScalar}, newMatrixRepresentation = matrixRepresentation /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; newCoordinates = coordinates /. (#1 -> ToExpression[#1] & ) /@
Select[coordinates, StringQ]; christoffelSymbols =
Normal[SparseArray[(Module[{index = #1}, index -> Total[((1/2)*Inverse[newMatrixRepresentation][[index[[1]],#1]]*
(D[newMatrixRepresentation[[#1,index[[3]]]], newCoordinates[[index[[2]]]]] + D[newMatrixRepresentation[[
index[[2]],#1]], newCoordinates[[index[[3]]]]] - D[newMatrixRepresentation[[index[[2]],index[[3]]]],
newCoordinates[[#1]]]) & ) /@ Range[Length[newMatrixRepresentation]]]] & ) /@
Tuples[Range[Length[newMatrixRepresentation]], 3]]];
riemannTensor = Normal[SparseArray[(Module[{index = #1}, index -> D[christoffelSymbols[[index[[1]],index[[2]],
index[[4]]]], newCoordinates[[index[[3]]]]] - D[christoffelSymbols[[index[[1]],index[[2]],index[[3]]]],
newCoordinates[[index[[4]]]]] + Total[(christoffelSymbols[[index[[1]],#1,index[[3]]]]*christoffelSymbols[[
#1,index[[2]],index[[4]]]] & ) /@ Range[Length[newMatrixRepresentation]]] -
Total[(christoffelSymbols[[index[[1]],#1,index[[4]]]]*christoffelSymbols[[#1,index[[2]],index[[3]]]] & ) /@
Range[Length[newMatrixRepresentation]]]] & ) /@ Tuples[Range[Length[newMatrixRepresentation]], 4]]] /.
(ToExpression[#1] -> #1 & ) /@ Select[coordinates, StringQ];
ricciTensor = Normal[SparseArray[(Module[{index = #1}, index -> Total[(riemannTensor[[#1,First[index],#1,
Last[index]]] & ) /@ Range[Length[matrixRepresentation]]]] & ) /@
Tuples[Range[Length[matrixRepresentation]], 2]]];
ricciScalar = Total[(Inverse[matrixRepresentation][[First[#1],Last[#1]]]*ricciTensor[[First[#1],Last[#1]]] & ) /@