-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathjHumanLearningOptimization.m
107 lines (98 loc) · 2.19 KB
/
jHumanLearningOptimization.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
%[2015]-"A human learning optimization algorithm and its application
%to multi-dimensional knapsack problems"
% (9/12/2020)
function HLO = jHumanLearningOptimization(feat,label,opts)
% Parameters
pi = 0.85; % probability of individual learning
pr = 0.1; % probability of exploration learning
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'pi'), pi = opts.pi; end
if isfield(opts,'pr'), pr = opts.pr; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial
X = jInitialPopulation(N,dim);
% Fitness
fit = zeros(1,N);
fitSKD = inf;
for i = 1:N
fit(i) = fun(feat,label,X(i,:),opts);
% Update SKD/gbest
if fit(i) < fitSKD
fitSKD = fit(i);
SKD = X(i,:);
end
end
% Get IKD/pbest
fitIKD = fit;
IKD = X;
% Pre
curve = zeros(1,max_Iter);
curve(1) = fitSKD;
t = 2;
% Generations
while t <= max_Iter
for i = 1:N
% Update solution (8)
for d = 1:dim
% Radom probability in [0,1]
r = rand();
if r >= 0 && r < pr
% Random exploration learning operator (7)
if rand() < 0.5
X(i,d) = 0;
else
X(i,d) = 1;
end
elseif r >= pr && r < pi
X(i,d) = IKD(i,d);
else
X(i,d) = SKD(d);
end
end
end
% Fitness
for i = 1:N
% Fitness
fit(i) = fun(feat,label,X(i,:),opts);
% Update IKD/pbest
if fit(i) < fitIKD(i)
fitIKD(i) = fit(i);
IKD(i,:) = X(i,:);
end
% Update SKD/gbest
if fitIKD(i) < fitSKD
fitSKD = fitIKD(i);
SKD = IKD(i,:);
end
end
curve(t) = fitSKD;
fprintf('\nGeneration %d Best (HLO)= %f',t,curve(t))
t = t + 1;
end
% Select features based on selected index
Pos = 1:dim;
Sf = Pos(SKD == 1);
sFeat = feat(:,Sf);
% Store results
HLO.sf = Sf;
HLO.ff = sFeat;
HLO.nf = length(Sf);
HLO.c = curve;
HLO.f = feat;
HLO.l = label;
end
% Binary initialization strategy
function X = jInitialPopulation(N,dim)
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
if rand() > 0.5
X(i,d) = 1;
end
end
end
end