-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreactresnet_imagenet.py
233 lines (186 loc) · 7.32 KB
/
preactresnet_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#
# Copyright (c) 2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Pre-Activation ResNet for ImageNet
Pre-Activation ResNet for ImageNet, based on "Identity Mappings in Deep Residual Networks".
This is based on TorchVision's implementation of ResNet for ImageNet, with appropriate changes for pre-activation.
@article{
He2016,
author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
title = {Identity Mappings in Deep Residual Networks},
journal = {arXiv preprint arXiv:1603.05027},
year = {2016}
}
"""
import torch.nn as nn
import math
__all__ = ['PreactResNet', 'preact_resnet18', 'preact_resnet34', 'preact_resnet50', 'preact_resnet101',
'preact_resnet152']
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class PreactBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, preactivate=True):
super(PreactBasicBlock, self).__init__()
self.pre_bn = self.pre_relu = None
if preactivate:
self.pre_bn = nn.BatchNorm2d(inplanes)
self.pre_relu = nn.ReLU(inplace=True)
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1_2 = nn.BatchNorm2d(planes)
self.relu1_2 = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.downsample = downsample
self.stride = stride
self.preactivate = preactivate
def forward(self, x):
if self.preactivate:
preact = self.pre_bn(x)
preact = self.pre_relu(preact)
else:
preact = x
out = self.conv1(preact)
out = self.bn1_2(out)
out = self.relu1_2(out)
out = self.conv2(out)
if self.downsample is not None:
residual = self.downsample(preact)
else:
residual = x
out += residual
return out
class PreactBottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, preactivate=True):
super(PreactBottleneck, self).__init__()
self.pre_bn = self.pre_relu = None
if preactivate:
self.pre_bn = nn.BatchNorm2d(inplanes)
self.pre_relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1_2 = nn.BatchNorm2d(planes)
self.relu1_2 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2_3 = nn.BatchNorm2d(planes)
self.relu2_3 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.downsample = downsample
self.stride = stride
self.preactivate = preactivate
def forward(self, x):
if self.preactivate:
preact = self.pre_bn(x)
preact = self.pre_relu(preact)
else:
preact = x
out = self.conv1(preact)
out = self.bn1_2(out)
out = self.relu1_2(out)
out = self.conv2(out)
out = self.bn2_3(out)
out = self.relu2_3(out)
out = self.conv3(out)
if self.downsample is not None:
residual = self.downsample(preact)
else:
residual = x
out += residual
return out
class PreactResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(PreactResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.final_bn = nn.BatchNorm2d(512 * block.expansion)
self.final_relu = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(5, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
)
# On the first residual block in the first residual layer we don't pre-activate,
# because we take care of that (+ maxpool) after the initial conv layer
preactivate_first = stride != 1
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, preactivate_first))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x, return_activations=False):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.final_bn(x)
x = self.final_relu(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
# x = self.fc(x)
if return_activations:
return self.fc(x), x
else:
return self.fc(x)
def preact_resnet18(**kwargs):
"""Constructs a ResNet-18 model.
"""
model = PreactResNet(PreactBasicBlock, [2, 2, 2, 2], **kwargs)
return model
def preact_resnet34(**kwargs):
"""Constructs a ResNet-34 model.
"""
model = PreactResNet(PreactBasicBlock, [3, 4, 6, 3], **kwargs)
return model
def preact_resnet50(**kwargs):
"""Constructs a ResNet-50 model.
"""
model = PreactResNet(PreactBottleneck, [3, 4, 6, 3], **kwargs)
return model
def preact_resnet101(**kwargs):
"""Constructs a ResNet-101 model.
"""
model = PreactResNet(PreactBottleneck, [3, 4, 23, 3], **kwargs)
return model
def preact_resnet152(**kwargs):
"""Constructs a ResNet-152 model.
"""
model = PreactResNet(PreactBottleneck, [3, 8, 36, 3], **kwargs)
return model