-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathIEEE_13_3p.py
231 lines (211 loc) · 10.3 KB
/
IEEE_13_3p.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import numpy as np
from numpy import linalg as LA
import gym
import os
import random
import sys
from gym import spaces
from gym.utils import seeding
import copy
import matplotlib.pyplot as plt
from scipy.io import loadmat
import pandapower as pp
import pandapower.networks as pn
import pandas as pd
import math
from dssdata import SystemClass
from dssdata.pfmodes import run_static_pf
from dssdata.tools import voltages
from dssdata.pfmodes import cfg_tspf
DSS_PATH = "opendss_model/13bus/IEEE13Nodeckt.dss"
def create_13bus3p(injection_bus):
#build the generators
distSys = SystemClass(path=DSS_PATH, kV=[115, 4.16, 0.48])
cfg_tspf(distSys,'0.02s')
injection_bus_dict = dict()
cmd = []
for idx in injection_bus:
v_i = voltages.get_from_buses(distSys,[str(idx)])
phase_i = v_i['phase'][0]
injection_bus_dict[str(idx)]=phase_i
distSys.dss.Circuit.SetActiveBus(str(idx))
kv_base = distSys.dss.Bus.kVBase()
for phase in phase_i:
if phase == 'a':
cmd.append(f"New Generator.bus{idx}_1 bus1={idx}.1 Phases=1 kv={kv_base} kw=0 kvar=0 pf=1 model=1")
elif phase == 'b':
cmd.append(f"New Generator.bus{idx}_2 bus1={idx}.2 Phases=1 kv={kv_base} kw=0 kvar=0 pf=1 model=1")
elif phase == 'c':
cmd.append(f"New Generator.bus{idx}_3 bus1={idx}.3 Phases=1 kv={kv_base} kw=0 kvar=0 pf=1 model=1")
distSys.dsscontent = distSys.dsscontent + cmd
return distSys, injection_bus_dict
class IEEE13bus3p(gym.Env):
def __init__(self, distSys, injection_bus_dict, v0=1, vmax=1.05, vmin=0.95):
self.network = distSys
self.obs_dim = 3
self.action_dim = 3
self.injection_bus = injection_bus_dict
self.injection_bus_str = list(injection_bus_dict.keys())
self.agentnum = len(self.injection_bus)
self.v0 = v0
self.vmax = vmax
self.vmin = vmin
self.state = np.ones((self.agentnum, 3))
def get_state(self):
v_pu = voltages.get_from_buses(self.network, self.injection_bus_str)
state_a = v_pu['v_pu_a'].to_numpy().reshape(-1,1)
state_b = v_pu['v_pu_b'].to_numpy().reshape(-1,1)
state_c = v_pu['v_pu_c'].to_numpy().reshape(-1,1)
self.state = np.hstack([state_a, state_b, state_c]) #shape: number_of_bus*3
self.state[np.isnan(self.state)]=1.0
return self.state
def step_Preward(self, action, p_action):
done = False
#global reward
reward = float(-1.0*LA.norm(p_action,1)-1000*LA.norm(np.clip(self.state-self.vmax, 0, np.inf),2)**2
-1000*LA.norm(np.clip(self.vmin-self.state, 0, np.inf),2)**2)
# local reward
agent_num = len(self.injection_bus)
reward_sep = np.zeros(agent_num, )
p_action = np.array(p_action)
for i in range(agent_num):
for j in range(3):
if self.state[i,j]<0.95: #ddpg may have really large action, so here we use 50 for \eta_1, for safe-DDPG, we use 1
reward_sep[i] +=float(-50.0*LA.norm([p_action[i,j]],1)-1000*LA.norm(np.clip([self.state[i,j]-self.vmax], 0, np.inf),2)**2
-1000*LA.norm(np.clip([self.vmin-self.state[i,j]], 0, np.inf),2)**2)
elif self.state[i,j]>1.05:
reward_sep[i] +=float(-50.0*LA.norm([p_action[i,j]],1)-1000*LA.norm(np.clip([self.state[i,j]-self.vmax], 0, np.inf),2)**2
-1000*LA.norm(np.clip([self.vmin-self.state[i,j]], 0, np.inf),2)**2)
#safe: -1.0*LA.norm(p_action[i],1)
# state-transition dynamics
action = action * 100 #from kVar to MVar
for i, idx in enumerate(self.injection_bus_str):
for phase in self.injection_bus[idx]:
if phase == 'a':
self.network.run_command(f"Generator.bus{idx}_1.kvar={action[i,0]}")
elif phase == 'b':
self.network.run_command(f"Generator.bus{idx}_2.kvar={action[i,1]}")
elif phase == 'c':
self.network.run_command(f"Generator.bus{idx}_3.kvar={action[i,2]}")
self.network.dss.Solution.Number(1)
self.network.dss.Solution.Solve()
self.state=self.get_state()
if(np.min(self.state) > 0.95 and np.max(self.state)< 1.05):
done = True
return self.state, reward, reward_sep, done
def reset_3b(self, seed=1): #only 3 buses are included
np.random.seed(seed)
senario = np.random.choice([0,1])
# senario = 1
self.network.init_sys()
if(senario == 0):
# Low voltage
bus675_a_kw = -100*np.random.uniform(2, 13)
bus675_b_kw = -100*np.random.uniform(3, 20)
bus675_c_kw = -100*np.random.uniform(2, 13)
self.network.run_command(f"Generator.bus675_1.kw={bus675_a_kw}")
self.network.run_command(f"Generator.bus675_2.kw={bus675_b_kw}")
self.network.run_command(f"Generator.bus675_3.kw={bus675_c_kw}")
bus633_a_kw = -100*np.random.uniform(6, 28)
bus633_b_kw = -100*np.random.uniform(5, 25)
bus633_c_kw = -100*np.random.uniform(3, 25)
self.network.run_command(f"Generator.bus633_1.kw={bus633_a_kw}")
self.network.run_command(f"Generator.bus633_2.kw={bus633_b_kw}")
self.network.run_command(f"Generator.bus633_3.kw={bus633_c_kw}")
bus680_a_kw = -100*np.random.uniform(1.5, 5)
bus680_b_kw = -100*np.random.uniform(1.5, 8)
bus680_c_kw = -100*np.random.uniform(1.5, 8)
self.network.run_command(f"Generator.bus680_1.kw={bus680_a_kw}")
self.network.run_command(f"Generator.bus680_2.kw={bus680_b_kw}")
self.network.run_command(f"Generator.bus680_3.kw={bus680_c_kw}")
if(senario == 1):
# High voltage
bus675_a_kw = 100*np.random.uniform(4, 20)
bus675_b_kw = 100*np.random.uniform(3, 20)
bus675_c_kw = 100*np.random.uniform(2, 20)
self.network.run_command(f"Generator.bus675_1.kw={bus675_a_kw}")
self.network.run_command(f"Generator.bus675_2.kw={bus675_b_kw}")
self.network.run_command(f"Generator.bus675_3.kw={bus675_c_kw}")
bus633_a_kw = 100*np.random.uniform(5, 20)
bus633_b_kw = 100*np.random.uniform(8, 18)
bus633_c_kw = 100*np.random.uniform(8, 15)
self.network.run_command(f"Generator.bus633_1.kw={bus633_a_kw}")
self.network.run_command(f"Generator.bus633_2.kw={bus633_b_kw}")
self.network.run_command(f"Generator.bus633_3.kw={bus633_c_kw}")
bus680_a_kw = 100*np.random.uniform(1.5, 5)
bus680_b_kw = 100*np.random.uniform(4, 7)
bus680_c_kw = 100*np.random.uniform(3, 10)
self.network.run_command(f"Generator.bus680_1.kw={bus680_a_kw}")
self.network.run_command(f"Generator.bus680_2.kw={bus680_b_kw}")
self.network.run_command(f"Generator.bus680_3.kw={bus680_c_kw}")
self.network.dss.Solution.Number(1)
self.network.dss.Solution.Solve()
self.state=self.get_state()
return self.state
def reset(self, seed=1): #sample different initial volateg conditions during training
np.random.seed(seed)
senario = np.random.choice([0,1])
# senario = 1
self.network.init_sys()
if(senario == 0):
# Low voltage
bus_a_kw = -100*np.random.uniform(2, 4.5)
bus_b_kw = -100*np.random.uniform(3, 5)
bus_c_kw = -100*np.random.uniform(2, 4)
for idx in self.injection_bus_str:
for phase in self.injection_bus[idx]:
if phase == 'a':
self.network.run_command(f"Generator.bus{idx}_1.kw={bus_a_kw}")
elif phase == 'b':
self.network.run_command(f"Generator.bus{idx}_2.kw={bus_b_kw}")
elif phase == 'c':
self.network.run_command(f"Generator.bus{idx}_3.kw={bus_c_kw}")
if(senario == 1):
# High voltage
bus_a_kw = 100*np.random.uniform(3, 5.5)
bus_b_kw = 100*np.random.uniform(4.5, 5)
bus_c_kw = 100*np.random.uniform(4, 5)
for idx in self.injection_bus_str:
for phase in self.injection_bus[idx]:
if phase == 'a':
self.network.run_command(f"Generator.bus{idx}_1.kw={bus_a_kw}")
elif phase == 'b':
self.network.run_command(f"Generator.bus{idx}_2.kw={bus_b_kw}")
elif phase == 'c':
self.network.run_command(f"Generator.bus{idx}_3.kw={bus_c_kw}")
self.network.dss.Solution.Number(1)
self.network.dss.Solution.Solve()
self.state=self.get_state()
return self.state
if __name__ == "__main__":
# injection_bus = np.array([675,633,680])
# bus 670 is actually a concentrated point load of the distributed load on line 632 to 671 located at 1/3 the distance from node 632
injection_bus = np.array([633,634,671,645,646,692,675,611,652,632,680,684])
net, injection_bus_dict = create_13bus3p(injection_bus)
env = IEEE13bus3p(net, injection_bus_dict)
state_list = []
for i in range(100):
state = env.reset(i)
state_list.append(state)
state_list = np.array(state_list)
# print(state_list.shape)
fig, axs = plt.subplots(len(injection_bus), 3, figsize=(3,11))
for i in range(3):
for j in range(len(injection_bus)):
axs[j,i].hist(state_list[:,j,i])
# axs[j,i].hist(state_list[:,j,i],[1.0,1.05,1.10,1.15,1.20,1.25])
plt.tight_layout()
plt.show()
# state = env.reset(0)
# for i in range(40):
# action = np.zeros((len(injection_bus),3))
# action += 0.01*i
# state, _,_,_ = env.step_Preward(action,action)
# state_list.append(state)
# # print(env.network.run_command('? Load.675a.kw'))
# state_list = np.array(state_list)
# fig, axs = plt.subplots(len(injection_bus), 3, figsize=(9,9))
# for i in range(3):
# for j in range(len(injection_bus)):
# axs[j,i].plot(range(40),state_list[:,j,i])
# plt.show()