-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnb_optimizers.py
162 lines (131 loc) · 5.59 KB
/
nb_optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
import torch.nn as nn
import torch.optim as optim
from abc import ABC, abstractmethod
class optimizer:
def __init__(self, parameters, device):
self.parameters = list(parameters)
self.device = device
@abstractmethod
def step(self):
pass
def zero_grad(self):
for p in self.parameters:
p.grad = None
class SGDOptimizer(optimizer):
def __init__(self, parameters, device, args):
super().__init__(parameters, device)
self.learning_rate = args["learning_rate"]
def step(self):
for p in self.parameters:
p.data -= p.grad * self.learning_rate
class MomentumSGDOptimizer(optimizer):
def __init__(self, parameters, device, args):
super().__init__(parameters, device)
self.learning_rate = args["learning_rate"]
self.rho = args["rho"]
self.m = None
def step(self):
if self.m is None:
self.m = [torch.zeros(p.size()).to(self.device) for p in self.parameters]
for i, p in enumerate(self.parameters):
self.m[i] = self.rho * self.m[i] + p.grad
p.grad = self.learning_rate * self.m[i]
p.data -= p.grad
class RMSPropOptimizer(optimizer):
def __init__(self, parameters, device, args):
super().__init__(parameters, device)
self.tau = args["tau"]
self.learning_rate = args["learning_rate"]
self.r = None
self.delta = args["delta"]
def step(self):
if self.r is None:
self.r = [torch.zeros(p.size()).to(self.device) for p in self.parameters]
for i, p in enumerate(self.parameters):
grad = p.grad
self.r[i] = self.r[i] * self.tau + (1 - self.tau) * grad * grad
p.data -= self.learning_rate / (self.delta + torch.sqrt(self.r[i])) * grad
class AMSgradOptimizer(optimizer):
def __init__(self, parameters, device, args):
super().__init__(parameters, device)
self.beta1 = args["beta1"]
self.beta2 = args["beta2"]
self.learning_rate = args["learning_rate"]
self.delta = args["delta"]
self.iteration = None
self.m1 = None
self.m2 = None
self.m2_max = None
def step(self):
if self.m1 is None:
self.m1 = [torch.zeros(p.grad.size()).to(self.device) for p in self.parameters]
if self.m2 is None:
self.m2 = [torch.zeros(p.grad.size()).to(self.device) for p in self.parameters]
if self.m2_max is None:
self.m2_max = [torch.zeros(p.grad.size()).to(self.device) for p in self.parameters]
if self.iteration is None:
self.iteration = 1
for i, p in enumerate(self.parameters):
grad = p.grad
self.m1[i] = self.m1[i] * self.beta1 + (1 - self.beta1) * grad
self.m2[i] = self.m2[i] * self.beta2 + (1 - self.beta2) * grad * grad
m1_hat = self.m1[i] / (1 - self.beta1 ** self.iteration)
m2_hat = self.m2[i] / (1 - self.beta2 ** self.iteration)
self.m2_max[i] = torch.maximum(m2_hat, self.m2_max[i])
p.data -= self.learning_rate * m1_hat / (self.delta + torch.sqrt(self.m2_max[i]))
self.iteration = self.iteration + 1
class AdagradOptimizer(optimizer):
def __init__(self, parameters, device, args):
super().__init__(parameters, device)
self.learning_rate = args["learning_rate"]
self.delta = args["delta"]
self.r = None
def step(self):
if self.r is None:
self.r = [torch.zeros(p.size()).to(self.device) for p in self.parameters]
for i, p in enumerate(self.parameters):
grad = p.grad
self.r[i] = self.r[i] + grad * grad
p.data -= self.learning_rate / (self.delta + torch.sqrt(self.r[i])) * grad
class ADAMOptimizer(optimizer):
def __init__(self, parameters, device, args):
super().__init__(parameters, device)
self.beta1 = args["beta1"]
self.beta2 = args["beta2"]
self.learning_rate = args["learning_rate"]
self.delta = args["delta"]
self.iteration = None
self.m = None
self.v = None
def step(self):
if self.m is None:
self.m = [torch.zeros(p.grad.size()).to(self.device) for p in self.parameters]
if self.v is None:
self.v = [torch.zeros(p.grad.size()).to(self.device) for p in self.parameters]
if self.iteration is None:
self.iteration = 1
for i, p in enumerate(self.parameters):
grad = p.grad
self.m[i] = self.m[i] * self.beta1 + (1 - self.beta1) * grad
self.v[i] = self.v[i] * self.beta2 + (1 - self.beta2) * grad * grad
m_hat = self.m[i] / (1 - self.beta1 ** self.iteration)
v_hat = self.v[i] / (1 - self.beta2 ** self.iteration)
p.data -= self.learning_rate * m_hat / (self.delta + torch.sqrt(v_hat))
self.iteration = self.iteration + 1
def createOptimizer(device, args, model):
p = model.parameters()
if args["optimizer"] == "sgd":
return SGDOptimizer(p, device, args)
elif args["optimizer"] == "momentumsgd":
return MomentumSGDOptimizer(p, device, args)
elif args["optimizer"] == "adagrad":
return AdagradOptimizer(p, device, args)
elif args["optimizer"] == "adam":
return ADAMOptimizer(p, device, args)
elif args["optimizer"] == "rmsprop":
return RMSPropOptimizer(p, device, args)
elif args["optimizer"] == "amsgrad":
return AMSgradOptimizer(p, device, args)
else:
raise NotImplementedError(f"Unknown optimizer {args['optimizer']}")