-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
39 lines (34 loc) · 1.38 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import torch.nn as nn
MODULE_SUCCESSION = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']
class VGG(nn.Module):
def __init__(self, in_channels=3, class_nb=10):
super(VGG, self).__init__()
self.features = self._make_layers(in_channels)
self.classifier = nn.Linear(512, class_nb)
def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
softmax_output = nn.Softmax()
out = softmax_output(out)
return out
def _make_layers(self, in_channels_nb=3):
layers = []
in_channels = in_channels_nb
reduce_pooling = False
for x in MODULE_SUCCESSION:
if x == 'M':
if reduce_pooling:
layers += [nn.MaxPool2d(kernel_size=2, stride=1)]
else:
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
if in_channels == 512 and in_channels_nb == 1 :
reduce_pooling = True
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)