-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrainingPipeline.py
318 lines (304 loc) · 13.9 KB
/
TrainingPipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch
import torchvision
import ssl
import random
import numpy as np
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import tqdm as tqdm
from torch.utils.data.sampler import SubsetRandomSampler
import os
import sys
import getopt
# Custom helpers
from model import *
import nb_optimizers as opt
def main(argv):
# Parse arguments
try:
opts, args = getopt.getopt(argv,"h",["dataset=","max_epoch=","batch_size=","optimizer=", "lr=","output_name=","init_model=","seed="])
except getopt.GetoptError:
print(argv)
print("Error in inputs, please be sure to provide at least the path to the control file.")
sys.exit(2)
dataset = "CIFAR10"
max_epoch = 100
batch_size = 1024
optimizer = "sgd"
seed = 2022
lr = 5e-1
output_name = ""
init_model = ""
for opt, arg in opts:
if opt == "-h":
print("\n")
print("Help section:\n")
print("This script is a pipeline to train a model with standard VGG architecture.")
print("on the given Dataset.\n")
print("Parameter:\n")
print("-init_model: (String) Path to the initial model weights. Please select a path")
print("\t to a model generated by the script init_model.py provided to ensure reproducibility.")
print("-output_name: (String) Basename given to the output folder. Please select a name which is")
print("\t not already in the working directory.\n")
print("Keyword Arguments:\n")
print("-dataset: (String) Name of the dataset. Please choose among:")
print("\tCIFAR10, CIFAR100, MNIST or FashionMNIST. (default=CIFAR10)")
print("-max_epoch: (int) Maximum number of epoch. (default=100)")
print("-batch_size: (int) Size of the dataloader batches. (default=1024)")
print("-optimizer: (String) Name of the optimizer. Please choose among:")
print("\tsgd, momentumsgd, adam or rmsprop. (default=sgd)")
print("-lr: (int) Learining rate for optimization. (default=5e-1)")
print("-seed: (int) Seed to use for reproducibility (default=2022)\n")
print("Outputs:\n")
print("The script will output 3 different files:")
print("-cnn_weights.npy: (Numpy binary) Array containing the weights of the first cnn layer.")
print("-linear_weights.npy: (Numpy binary) Array containing the weights of the linear layer.")
print("-ckpt.pth: (Pytorch checkpoint) Pytorch model with the best validation accuracy.")
sys.exit(0)
elif opt == "--dataset":
dataset = arg
elif opt == "--max_epoch":
max_epoch = int(arg)
elif opt == "--batch_size":
batch_size = int(arg)
elif opt == "--optimizer":
optimizer = arg
elif opt == "--lr":
lr = int(arg)
elif opt == "--output_name":
output_name = arg
elif opt == "--seed":
seed = int(arg)
elif opt == "--init_model":
init_model = arg
# Inputs Assertion
if batch_size < 0:
print("The minimum batch size is 0.")
sys.exit(1)
if optimizer not in ["sgd","momentumsgd","adam","rmsprop"]:
print(optimizer)
print("The given optimizer name is not supported. Please select among sgd,momentumsgd,adam or rmsprop.")
sys.exit(1)
if dataset not in ["CIFAR10","CIFAR100","MNIST","FashionMNIST"]:
print("The given data set name is not supported. Please select among CIFAR10,CIFAR100,MNIST or FashionMNIST.")
sys.exit(1)
if lr < 0:
print("The minimum learning rate is 0.")
sys.exit(1)
if max_epoch < 1:
print("The minimum number of epoch is 1.")
sys.exit(1)
if not os.path.isfile(init_model):
print("The input model file does not exist, please provide an existing file")
sys.exit(1)
if os.path.isdir(output_name):
print(f"The folder {output_name} already exists, please delete it or provide another name")
sys.exit(1)
try:
os.mkdir(output_name)
except:
print(f"Impossible to create output folder {output_name}. Please be sure of your permissions.")
sys.exit(1)
### Optimizer setup
optimizer_parameters = {"optimizer": optimizer, "learning_rate": lr, "rho": 0.9, "tau": 0.99, "delta": 1e-8, "beta1": 0.9,
"beta2": 0.999}
### Training Pipeline
training_pipeline(dataset,init_model,optimizer_parameters,output_name,seed=seed,batch_size=batch_size,max_epoch=max_epoch)
print("Training over, please check outputs for more details.")
### Helpers
def training_pipeline(dataset,init_model_pth,optimizer_parameters,basename,seed=2022,batch_size=1024,max_epoch=75):
""" Pipeline used to train the model on the given dataset. """
### Device setup
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
ssl._create_default_https_context = ssl._create_unverified_context
### Reproducibility
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
g = torch.Generator()
g.manual_seed(seed)
### Download Datasets
if dataset == "CIFAR10":
dataset_train = torchvision.datasets.CIFAR10("data/",download=True)
dataset_test = torchvision.datasets.CIFAR10("data/",download=True,train=False)
elif dataset == "CIFAR100":
dataset_train = torchvision.datasets.CIFAR100("data/",download=True)
dataset_test = torchvision.datasets.CIFAR100("data/",download=True,train=False)
elif dataset == "MNIST":
dataset_train = torchvision.datasets.MNIST("data/",download=True)
dataset_test = torchvision.datasets.MNIST("data/",download=True,train=False)
elif dataset == "FashionMNIST":
dataset_train = torchvision.datasets.FashionMNIST("data/",download=True)
dataset_test = torchvision.datasets.FashionMNIST("data/",download=True,train=False)
else:
raise Exception("Unavailable dataset, please select among CIFAR10, CIFAR100, MNIST, FashionMNIST.")
### Compute initial Transform
if dataset in ["CIFAR10","CIFAR100"]:
mean_per_channel = tuple((dataset_train.data/255).mean(axis=(0,1,2)))
std_per_channel = tuple((dataset_train.data/255).std(axis=(0,1,2)))
else:
mean_per_channel = (dataset_train.data.numpy()/255).mean()
std_per_channel = (dataset_train.data.numpy()/255).std()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean_per_channel, std_per_channel),
])
### Dataset Creation
if dataset == "CIFAR10":
dataset_train = torchvision.datasets.CIFAR10("data/",transform=transform)
dataset_test = torchvision.datasets.CIFAR10("data/",transform=transform,train=False)
elif dataset == "CIFAR100":
dataset_train = torchvision.datasets.CIFAR100("data/",transform=transform)
dataset_test = torchvision.datasets.CIFAR100("data/",transform=transform,train=False)
elif dataset == "MNIST":
dataset_train = torchvision.datasets.MNIST("data/",transform=transform)
dataset_test = torchvision.datasets.MNIST("data/",transform=transform,train=False)
elif dataset == "FashionMNIST":
dataset_train = torchvision.datasets.FashionMNIST("data/",transform=transform)
dataset_test = torchvision.datasets.FashionMNIST("data/",transform=transform,train=False)
### Validation Split
train_sampler, val_sampler = get_samplers(dataset_train,g)
### Dataloaders creation
dataloader_train = DataLoader(dataset_train,batch_size=batch_size,pin_memory=True,
worker_init_fn=seed_worker, generator=g, sampler=train_sampler,
)
dataloader_val = DataLoader(dataset_train,batch_size=batch_size,pin_memory=True,
worker_init_fn=seed_worker, generator=g, sampler=val_sampler,
)
dataloader_test = DataLoader(dataset_test,batch_size=batch_size,pin_memory=True,
worker_init_fn=seed_worker, generator=g, shuffle=True)
### Model Creation
if dataset == "CIFAR10":
in_c, out_c = (3,10)
elif dataset == "CIFAR100":
in_c, out_c = (3,100)
elif dataset == "MNIST":
in_c, out_c = (1,10)
elif dataset == "FashionMNIST":
in_c, out_c = (1,10)
model = VGG(in_c,out_c)
init_checkpoint = torch.load(init_model_pth)
model.load_state_dict(init_checkpoint['model_state_dict'])
model.to(device)
if device.type == 'cuda':
model = torch.nn.DataParallel(model)
cudnn.benchmark = True
### Optimization
criterion = nn.CrossEntropyLoss()
optimizer = opt.createOptimizer(device, optimizer_parameters, model)
scheduler = None
### Weights Collection
cnn_layer_weights = []
linear_layer_weights = []
### Saving names
ckpt_name = basename
weight_folder_name = basename
### Training Loop
training_loop(max_epoch,dataloader_train,device,optimizer,criterion,model,dataloader_val,
ckpt_name,scheduler,cnn_layer_weights,linear_layer_weights,in_c)
### Weights Saving
save_weights_for_viz(cnn_layer_weights,linear_layer_weights,weight_folder_name+"/")
def seed_worker(worker_id):
""" Function for reproducibility with the workers. """
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def get_samplers(train_dataset,generator,shuffle=True,val_ratio=0.1):
""" Give the train and validation samplers for the dataloaders. """
num_train = len(train_dataset)
indices = list(range(num_train))
split = int(np.floor(val_ratio * num_train))
if shuffle:
np.random.shuffle(indices)
train_idx, val_idx = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_idx,generator=generator)
val_sampler = SubsetRandomSampler(val_idx,generator=generator)
return train_sampler, val_sampler
def collect_weights(cnn_weights_list,linear_weights_list,model,channels_nb=3):
""" Collect weights of the first cnn layer and the linear layer for further evaluation. """
for m in model.modules():
if isinstance(m, nn.Conv2d):
if m.in_channels == channels_nb:
cnn_weights_list.append(m.weight.ravel().detach().cpu().numpy())
elif isinstance(m, nn.Linear):
linear_weights_list.append(m.weight.ravel().detach().cpu().numpy())
def train_step(model,train_dataloader,device,optimizer,criterion,epoch,cnn_layer_weights,linear_layer_weights,channels):
""" Standard single training step. """
model.train()
train_loss = 0
correct = 0
total = 0
idx = 0
for inputs, targets in tqdm.tqdm(train_dataloader,leave=False):
### Collect Weights
if (idx%4) == 0:
collect_weights(cnn_layer_weights,linear_layer_weights,model,channels)
### Perform training
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
### Compute Accuracy
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
idx += 1
print(f"At end of epoch {epoch} we have average loss {train_loss/total:.5f} and average accuracy {correct/total:.5f}%")
def validation_step(model,val_dataloader,device,criterion,best_acc,epoch,checkpoint_name="checkpoint"):
""" Standard validation step, with saving of the model if it has achieved the best accuracy so far."""
model.eval()
val_loss = 0
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in tqdm.tqdm(val_dataloader,leave=False):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
val_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# Save checkpoint.
accuracy = 100.*correct/total
if accuracy > best_acc:
print('Saving..')
state = {
'model': model.state_dict(),
'accuracy': accuracy,
'epoch': epoch,
}
if not os.path.isdir(checkpoint_name):
os.mkdir(checkpoint_name)
torch.save(state, checkpoint_name+"/ckpt.pth")
print(f"New optimal model at epoch {epoch} saved with validation accuracy {correct/total:.5f}%")
else:
print(f"Validation accuracy {correct/total:.5f}%")
return accuracy
def training_loop(max_epoch,dataloader_train,device,optimizer,criterion,model,dataloader_val,
ckpt_name,scheduler,cnn_layer_weights,linear_layer_weights,channels):
""" Loop for training, alternating between training and validation step. """
best_accuracy = -1
for epoch in tqdm.tqdm(range(max_epoch)):
train_step(model,dataloader_train,device,optimizer,criterion,epoch,cnn_layer_weights,linear_layer_weights,channels)
epoch_accuracy = validation_step(model,dataloader_val,device,criterion,best_accuracy,epoch,checkpoint_name=ckpt_name)
if epoch_accuracy > best_accuracy:
best_accuracy = epoch_accuracy
if scheduler != None:
scheduler.step()
def save_weights_for_viz(cnn_weights,linear_weights,basename):
""" Save weights for further investigation. """
cnn_file = open(basename+"cnn_weights.npy","wb")
linear_file = open(basename+"linear_weights.npy","wb")
np.save(cnn_file,cnn_weights)
np.save(linear_file,linear_weights)
cnn_file.close()
linear_file.close()
if __name__ == "__main__":
main(sys.argv[1:])