-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTestingPipeline.py
220 lines (210 loc) · 10 KB
/
TestingPipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
import torchvision
import ssl
import random
import numpy as np
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import tqdm as tqdm
from torch.utils.data.sampler import SubsetRandomSampler
import os
import sys
import getopt
# Custom helpers
from model import *
import nb_optimizers as opt
def main(argv):
# Parse arguments
try:
opts, args = getopt.getopt(argv,"h",["dataset=","batch_size","model=","seed="])
except getopt.GetoptError:
print(argv)
print("Error in inputs, please be sure to provide at least the path to the control file.")
sys.exit(2)
dataset = "CIFAR10"
batch_size = 1024
seed = 2022
model = ""
for opt, arg in opts:
if opt == "-h":
print("\n")
print("Help section:\n")
print("This script is a pipeline to test a model with standard VGG architecture.")
print("on the given Dataset with a few augmentations. It will be first tested on the basic test set.")
print("Then it will be tested on three other datasets:")
print("\t-The test set with gaussian noise (kernel_size=3,sigma=0.2)")
print("\t-The test set with random affine transform (degree +- 20, translation +- 20%, scale +-15%")
print("\t-The test set with random horizontal and vertical flip (both with probability 0.5).\n")
print("Parameter:\n")
print("-model: (String) Path to the model weights.\n")
print("Keyword Arguments:\n")
print("-dataset: (String) Name of the dataset. Please choose among:")
print("\tCIFAR10, CIFAR100, MNIST or FashionMNIST. (default=CIFAR10)")
print("-seed: (int) Seed to use for reproducibility (default=2022)\n")
sys.exit(0)
elif opt == "--dataset":
dataset = arg
elif opt == "--seed":
seed = int(arg)
elif opt == "--model":
model = arg
# Inputs Assertion
if batch_size < 0:
print("The minimum batch size is 0.")
sys.exit(1)
if dataset not in ["CIFAR10","CIFAR100","MNIST","FashionMNIST"]:
print("The given data set name is not supported. Please select among CIFAR10,CIFAR100,MNIST or FashionMNIST.")
sys.exit(1)
if not os.path.isfile(model):
print("The input model file does not exist, please provide an existing file")
sys.exit(1)
### Testing Pipeline
testing_pipeline(dataset,model,seed=seed,batch_size=batch_size)
print("\nTesting over.")
### Helpers
def seed_worker(worker_id):
""" Function for dataloader and worker reproducibility. """
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def test_step(model,test_dataloader,device,criterion):
""" Single test step with accuarcy evaluation. """
model.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in tqdm.tqdm(test_dataloader,leave=False):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
accuracy = 100.*correct/total
return accuracy
def testing_pipeline(dataset,model_path,seed=2022,batch_size=1024):
""" Test the model on the given dataset with several augmentations. """
### Setup
ssl._create_default_https_context = ssl._create_unverified_context
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
### Reproducibility
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
g = torch.Generator()
g.manual_seed(seed)
### Download Datasets
if dataset == "CIFAR10":
dataset_train = torchvision.datasets.CIFAR10("data/",download=True)
dataset_test = torchvision.datasets.CIFAR10("data/",download=True,train=False)
elif dataset == "CIFAR100":
dataset_train = torchvision.datasets.CIFAR100("data/",download=True)
dataset_test = torchvision.datasets.CIFAR100("data/",download=True,train=False)
elif dataset == "MNIST":
dataset_train = torchvision.datasets.MNIST("data/",download=True)
dataset_test = torchvision.datasets.MNIST("data/",download=True,train=False)
elif dataset == "FashionMNIST":
dataset_train = torchvision.datasets.FashionMNIST("data/",download=True)
dataset_test = torchvision.datasets.FashionMNIST("data/",download=True,train=False)
else:
raise Exception("Unavailable dataset, please select among CIFAR10, CIFAR100, MNIST, FashionMNIST.")
### Compute initial Transform
if dataset in ["CIFAR10","CIFAR100"]:
mean_per_channel = tuple((dataset_train.data/255).mean(axis=(0,1,2)))
std_per_channel = tuple((dataset_train.data/255).std(axis=(0,1,2)))
else:
mean_per_channel = (dataset_train.data.numpy()/255).mean()
std_per_channel = (dataset_train.data.numpy()/255).std()
base_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean_per_channel, std_per_channel),
])
noise_transform = transforms.Compose([
transforms.GaussianBlur(3),
transforms.ToTensor(),
transforms.Normalize(mean_per_channel, std_per_channel),
])
affine_transform = transforms.Compose([
transforms.RandomAffine(20,translate=(0.2,0.2),scale=(0.85,1.15)),
transforms.ToTensor(),
transforms.Normalize(mean_per_channel, std_per_channel),
])
flip_transform = transforms.Compose([
transforms.RandomVerticalFlip(0.5),
transforms.RandomHorizontalFlip(0.5),
transforms.ToTensor(),
transforms.Normalize(mean_per_channel, std_per_channel),
])
### Dataset Creation
if dataset == "CIFAR10":
dataset_test = torchvision.datasets.CIFAR10("data/",transform=base_transform,train=False)
dataset_noise = torchvision.datasets.CIFAR10("data/",transform=noise_transform,train=False)
dataset_affine = torchvision.datasets.CIFAR10("data/",transform=affine_transform,train=False)
dataset_flip = torchvision.datasets.CIFAR10("data/",transform=flip_transform,train=False)
elif dataset == "CIFAR100":
dataset_test = torchvision.datasets.CIFAR100("data/",transform=base_transform,train=False)
dataset_noise = torchvision.datasets.CIFAR100("data/",transform=noise_transform,train=False)
dataset_affine = torchvision.datasets.CIFAR100("data/",transform=affine_transform,train=False)
dataset_flip = torchvision.datasets.CIFAR100("data/",transform=flip_transform,train=False)
elif dataset == "MNIST":
dataset_test = torchvision.datasets.MNIST("data/",transform=base_transform,train=False)
dataset_noise = torchvision.datasets.MNIST("data/",transform=noise_transform,train=False)
dataset_affine = torchvision.datasets.MNIST("data/",transform=affine_transform,train=False)
dataset_flip = torchvision.datasets.MNIST("data/",transform=flip_transform,train=False)
elif dataset == "FashionMNIST":
dataset_test = torchvision.datasets.FashionMNIST("data/",transform=base_transform,train=False)
dataset_noise = torchvision.datasets.FashionMNIST("data/",transform=noise_transform,train=False)
dataset_affine = torchvision.datasets.FashionMNIST("data/",transform=affine_transform,train=False)
dataset_flip = torchvision.datasets.FashionMNIST("data/",transform=flip_transform,train=False)
### Dataloaders creation
dataloader_test = DataLoader(dataset_test,batch_size=batch_size,pin_memory=True,
worker_init_fn=seed_worker, generator=g, shuffle=True)
dataloader_noise = DataLoader(dataset_noise,batch_size=batch_size,pin_memory=True,
worker_init_fn=seed_worker, generator=g, shuffle=True)
dataloader_affine = DataLoader(dataset_affine,batch_size=batch_size,pin_memory=True,
worker_init_fn=seed_worker, generator=g, shuffle=True)
dataloader_flip = DataLoader(dataset_flip,batch_size=batch_size,pin_memory=True,
worker_init_fn=seed_worker, generator=g, shuffle=True)
### Model Creation
if dataset == "CIFAR10":
in_c, out_c = (3,10)
elif dataset == "CIFAR100":
in_c, out_c = (3,100)
elif dataset == "MNIST":
in_c, out_c = (1,10)
elif dataset == "FashionMNIST":
in_c, out_c = (1,10)
model = VGG(in_c,out_c)
init_checkpoint = torch.load(model_path)
state_dict = init_checkpoint["model"]
formated_state_dict = dict()
for key, value in state_dict.items():
formated_state_dict[key.split("module.")[-1]] = value
model.load_state_dict(formated_state_dict)
model.to(device)
if device.type == 'cuda':
model = torch.nn.DataParallel(model)
cudnn.benchmark = True
### Old Validation Accuracy
validation_accuracy = init_checkpoint["accuracy"]
print(f"\nThe model has a validation accuracy of {validation_accuracy:.5f}%")
### Criterion Definition
criterion = nn.CrossEntropyLoss()
### Testing steps
base_acc = test_step(model,dataloader_test,device,criterion)
noise_acc = test_step(model,dataloader_noise,device,criterion)
affine_acc = test_step(model,dataloader_affine,device,criterion)
flip_acc = test_step(model,dataloader_flip,device,criterion)
print("The model has the following perfomances:")
print(f"-\tAccuracy on the standard test set: {base_acc:.5f}%")
print(f"-\tAccuracy on the noisy test set: {noise_acc:.5f}%")
print(f"-\tAccuracy on the affine transformed test set: {affine_acc:.5f}%")
print(f"-\tAccuracy on the flipped test set: {flip_acc:.5f}%")
return base_acc, noise_acc, affine_acc, flip_acc
if __name__ == "__main__":
main(sys.argv[1:])