-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCluster.cpp
240 lines (203 loc) · 5.57 KB
/
Cluster.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <set>
#include "Cluster.h"
Cluster::Cluster(int k, vector<Data*> data) {
_data = data;
_k = k;
_centroids = (Data**)malloc(sizeof(Data*)*k);
_clusters = new vector<Data*>[k];
_clusters_prev = new vector<Data*>[k];
// Number of clusters must be less than size of training set
assert(k <= data.size());
initializeCentroids();
}
Cluster::~Cluster() {
for (int i = 0; i < _k; i++) {
if (_centroids[i])
delete _centroids[i];
}
delete [] _centroids;
delete [] _clusters;
delete [] _clusters_prev;
}
void Cluster::initializeCentroids() {
// Initialize centroids
set<int> chosen;
Data *previous = NULL;
int index = -1;
for (int i = 0; i < _k; i++) {
float weights[_data.size()];
if (!previous) {
// Initialize index to random data point
index = rand() % _data.size();
}
else {
// Assign a weight proportional to the square of the distance to last chosen point
float sum = 0;
for (int j = 0; j < _data.size(); j++) {
weights[j] = distance(_data.at(j), previous);
weights[j] *= weights[j];
sum += weights[j];
}
// Now select a training example at random
float random = static_cast <float> (rand()) / (static_cast <float> (RAND_MAX/sum));
bool duplicate = false;
do {
duplicate = false;
for (int j = 0; j < _data.size(); j++) {
if (random < weights[j]) {
index = j;
break;
}
else {
random -= weights[j];
}
}
if (chosen.count(index)) {
random = static_cast <float> (rand()) / (static_cast <float> (RAND_MAX/sum));
duplicate = true;
}
} while (duplicate);
}
chosen.insert(index);
float* features = _data.at(index)->features();
int size = _data.at(index)->size();
_centroids[i] = new Data(size, features);
previous = _centroids[i];
LOG("Initializing cluster %d to:\n", i);
for (int j = 0; j < size; j++)
LOG("\t%d:%f", j, features[j]);
LOG("\n", NULL);
}
}
void Cluster::update() {
updateUntilConvergence();
}
double Cluster::distance(Data* a, Data* b) {
int n = a->size();
int m = b->size();
assert(m == n);
float* aFeatures = a->features();
float* bFeatures = b->features();
double result = 0;
for (int i = 0; i < n; i++) {
double diff = (aFeatures[i] - bFeatures[i]);
diff *= diff;
result += diff;
}
return sqrt(result);
}
bool Cluster::step() {
int set_size = _data.size();
// Copy current state to previous state
LOG("New Iteration\n", NULL);
for (int i = 0; i < _k; i++) {
_clusters_prev[i].clear();
int vecSize = _clusters[i].size();
int count = 0;
for (int j = 0; j < vecSize; j++) {
_clusters_prev[i].push_back(_clusters[i].at(j));
count++;
}
LOG("Cluster %d : %d\n", i, count);
}
LOG("\n", NULL);
for (int i = 0; i < _k; i++) {
_clusters[i].clear();
}
for (int i = 0; i < set_size; i++) {
vector<Data*> *closestCluster;
int cc = -1;
double minDist = DBL_MAX;
for (int j = 0; j < _k; j++) {
double dist = distance(_data.at(i), _centroids[j]);
if (dist < minDist) {
minDist = dist;
closestCluster = &_clusters[j];
cc = j;
}
}
// add to closest cluster
closestCluster->push_back(_data.at(i));
}
// Check to see if no change
for (int i = 0; i < _k; i++) {
int vecSize = _clusters[i].size();
int prevSize = _clusters_prev[i].size();
if (vecSize != prevSize)
return false;
for (int j = 0; j < vecSize; j++) {
if (_clusters_prev[i].at(j) != _clusters[i].at(j))
return false;
}
}
return true; // return true if no change
}
float** Cluster::centroids() {
assert(*_centroids);
int numParams = (*_centroids)->size();
float** c = new float*[_k];
for (int i = 0; i < _k; i++) {
c[i] = new float[numParams];
float* features = _centroids[i]->features();
for (int j = 0; j < numParams; j++) {
c[i][j] = features[j];
}
}
return c;
}
void Cluster::updateCentroids() {
// Examine first training example to get feature count, etc
if (!_data.size())
return;
int featureCount = _data.at(0)->size();
// O(scary)
for (int i = 0; i < _k; i++) {
int clusterSize = _clusters[i].size();
float sums[featureCount];
memset(sums, 0, sizeof(sums));
for (int j = 0; j < clusterSize; j++) {
Data *currentData = _clusters[i].at(j);
float *currentFeatures = currentData->features();
for (int n = 0; n < featureCount; n++) {
sums[n] += currentFeatures[n];
}
}
for (int j = 0; j < featureCount; j++) {
sums[j] /= clusterSize;
}
if (_centroids[i])
delete _centroids[i];
_centroids[i] = new Data(featureCount, sums);
}
}
void Cluster::updateUntilConvergence() {
bool converged = false;
do {
converged = step(); // Assign clusters
updateCentroids();
} while (!converged);
int size = _centroids[0]->size();
LOG("Converged;\n", NULL);
for (int i = 0; i < _k; i++) {
for (int j = 0; j < size; j++)
LOG("\t%d:%f", j, _centroids[i]->features()[j]);
LOG("\n", NULL);
}
}
int Cluster::classify(Data *data) {
float minDist = FLT_MAX;
int classification = -1;
for (int i = 0; i < _k; i++) {
float dist = distance(data, _centroids[i]);
if (dist < minDist) {
minDist = dist;
classification = i;
}
}
cout << "Classification: " << classification << endl;
return classification;
}