-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
109 lines (97 loc) · 5.7 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import subprocess
import argparse
import os
def makedir(name):
dirname = './output/{}'.format(name)
os.makedirs(dirname, exist_ok=True)
return dirname
def override_default(current):
assert current != None
def main():
parser = argparse.ArgumentParser(description='Run the entire generate-train-generate-eval pipeline')
parser.add_argument('--genname', type=str,
help='name of the run of the CFG generation (changes file suffixes)')
parser.add_argument('--evalname', type=str,
help='name of the run of the evaluation (changes file suffixes)')
parser.add_argument('--modelname', type=str,
help='name of the run of the trained model (changes file suffixes)')
parser.add_argument('--allname', type=str,
help='name of everything. cant be used with other name args. ')
parser.add_argument('--language', type=str,
help='Name of the language to eval on (deepcoder or lambda2 or lambda2cfg or haskell or haskellast)')
parser.add_argument('--do_all', action='store_true',
help = 'Do the entire pipeline. ')
parser.add_argument('--do_cfgs', action='store_true',
help = 'Generate training examples from our CFG generator to train GPT on. ')
parser.add_argument('--do_train', action='store_true',
help = 'Train GPT on CFG-generated programs')
parser.add_argument('--do_eval_cfgs', action='store_true',
help = 'Generate evaluation examples from our CFG generator to evaluate GPT on. ')
parser.add_argument('--do_gpt_gen', action='store_true',
help = 'Generate programs using a trained GPT model')
parser.add_argument('--do_free_gen', action='store_true',
help = 'Generate programs using a trained GPT model in an unformatted way. Must provide a prompt using option "--free_prompt"')
parser.add_argument('--free_prompt', type=str, default="./prompt.txt",
help = "Location of file that contains the prompt as rawtext. ")
parser.add_argument('--do_eval', action='store_true',
help = 'Evaluate examples created by GPT. ')
parser.add_argument('--num_train', type=int, default=10000,
help='number of examples to make for GPT to train on')
parser.add_argument('--num_eval', type=int, default=1000,
help='number of examples to make for GPT to generate/eval for')
parser.add_argument('--num_attempts', type=int, default=25,
help='number of attempts GPT has to create a working program. ')
parser.add_argument('--attr_regex', type=str, default=None,
help='If using a CFG-printing language, this is an attribute regex to filter the attributes that GPT sees. ')
parser.add_argument('--randomize_weights', action='store_true', help="Use randomized, as opposed to pretrained EutherAI weights when training. ")
args = parser.parse_args()
language = args.language
modelname = args.modelname
evalname = args.evalname
genname = args.genname
allname = args.allname
if allname != None:
assert modelname is None
assert genname is None
assert evalname is None
modelname = allname
genname = allname
evalname = allname
gendir = makedir(genname)
modeldir = makedir(modelname)
evaldir = makedir(evalname)
do_all = args.do_all
attr_regex = args.attr_regex
cfg_generated_train_path = '{}/cfg-generated-{}.txt'.format(gendir, genname)
cfg_generated_eval_path = '{}/cfg-generated-{}-eval.txt'.format(gendir, genname)
gpt_generated_eval_path = '{}/gpt-generated-{}-model-{}-eval.txt'.format(evaldir, evalname, modelname)
eval_log_path = '{}/{}-model-{}-results.txt'.format(evaldir, evalname, modelname)
examples_eval_path = '{}/{}-model-{}-examples.txt'.format(evaldir, evalname, modelname)
if(args.do_cfgs or do_all):
cmd = 'echo -n | ./gradlew run --args="generate --useful -n {} -o {} -l {}"'.format(args.num_train, cfg_generated_train_path, language)
print(cmd)
ret = subprocess.call(cmd, shell=True)
if (ret != 0):
return
if(args.do_train or do_all):
from src.main.python.train import train_gpt
train_gpt(run_name = modelname, generated_path = cfg_generated_train_path, output_dir = modeldir, attr_regex=attr_regex, use_pretrained=(not args.randomize_weights))
if(args.do_eval_cfgs or do_all):
cmd = 'echo -n | ./gradlew run --args="generate --useful -n {} -o {} -l {}"'.format(args.num_eval, cfg_generated_eval_path, language)
ret = subprocess.call(cmd, shell=True)
if (ret != 0):
return
if(args.do_gpt_gen or do_all):
from src.main.python.generate import generate_gpt
generate_gpt(model_run_name = modelname, eval_output_generated_fname=gpt_generated_eval_path, eval_generated_fname=cfg_generated_eval_path, model_dir_base = modeldir, num_attempts=args.num_attempts)
if(args.do_free_gen):
from src.main.python.generate import generate_gpt_free
free_prompt_str = open(args.free_prompt, "r").read()
generate_gpt_free(model_run_name = modelname, eval_output_generated_fname=gpt_generated_eval_path, prompt=free_prompt_str, model_dir_base = modeldir, num_gen=args.num_eval)
if(args.do_eval or do_all):
cmd = 'echo -n | ./gradlew run --args="evaluate -i {} -l {} -o {} -e {}"'.format(gpt_generated_eval_path, language, eval_log_path, examples_eval_path)
ret = subprocess.call(cmd, shell=True)
if (ret != 0):
return
if __name__ == "__main__":
main()