-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmain.py
167 lines (133 loc) · 5.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# ------------------------------------------
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
# ------------------------------------------
# Modification:
# Added code for l2p implementation
# -- Jaeho Lee, [email protected]
# ------------------------------------------
import sys
import argparse
import datetime
import random
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
from pathlib import Path
from timm.models import create_model
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from datasets import build_continual_dataloader
from engine import *
import models
import utils
import warnings
warnings.filterwarnings('ignore', 'Argument interpolation should be of type InterpolationMode instead of int')
def main(args):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
data_loader, class_mask = build_continual_dataloader(args)
print(f"Creating original model: {args.model}")
original_model = create_model(
args.model,
pretrained=args.pretrained,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
)
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=args.pretrained,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
prompt_length=args.length,
embedding_key=args.embedding_key,
prompt_init=args.prompt_key_init,
prompt_pool=args.prompt_pool,
prompt_key=args.prompt_key,
pool_size=args.size,
top_k=args.top_k,
batchwise_prompt=args.batchwise_prompt,
prompt_key_init=args.prompt_key_init,
head_type=args.head_type,
use_prompt_mask=args.use_prompt_mask,
)
original_model.to(device)
model.to(device)
if args.freeze:
# all parameters are frozen for original vit model
for p in original_model.parameters():
p.requires_grad = False
# freeze args.freeze[blocks, patch_embed, cls_token] parameters
for n, p in model.named_parameters():
if n.startswith(tuple(args.freeze)):
p.requires_grad = False
print(args)
if args.eval:
acc_matrix = np.zeros((args.num_tasks, args.num_tasks))
for task_id in range(args.num_tasks):
checkpoint_path = os.path.join(args.output_dir, 'checkpoint/task{}_checkpoint.pth'.format(task_id+1))
if os.path.exists(checkpoint_path):
print('Loading checkpoint from:', checkpoint_path)
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['model'])
else:
print('No checkpoint found at:', checkpoint_path)
return
_ = evaluate_till_now(model, original_model, data_loader, device,
task_id, class_mask, acc_matrix, args,)
return
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
if args.unscale_lr:
global_batch_size = args.batch_size
else:
global_batch_size = args.batch_size * args.world_size
args.lr = args.lr * global_batch_size / 256.0
optimizer = create_optimizer(args, model_without_ddp)
if args.sched != 'constant':
lr_scheduler, _ = create_scheduler(args, optimizer)
elif args.sched == 'constant':
lr_scheduler = None
criterion = torch.nn.CrossEntropyLoss().to(device)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
train_and_evaluate(model, model_without_ddp, original_model,
criterion, data_loader, optimizer, lr_scheduler,
device, class_mask, args)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"Total training time: {total_time_str}")
if __name__ == '__main__':
parser = argparse.ArgumentParser('L2P training and evaluation configs')
config = parser.parse_known_args()[-1][0]
subparser = parser.add_subparsers(dest='subparser_name')
if config == 'cifar100_l2p':
from configs.cifar100_l2p import get_args_parser
config_parser = subparser.add_parser('cifar100_l2p', help='Split-CIFAR100 L2P configs')
elif config == 'five_datasets_l2p':
from configs.five_datasets_l2p import get_args_parser
config_parser = subparser.add_parser('five_datasets_l2p', help='5-Datasets L2P configs')
else:
raise NotImplementedError
get_args_parser(config_parser)
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)
sys.exit(0)