-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmainCW.py
57 lines (54 loc) · 2.49 KB
/
mainCW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
from foolbox2.criteria import TargetClass
from foolbox2.models.wrappers import CompositeModel
# from fmodel3 import create_fmodel_combo
# from fmodel import create_fmodel as create_fmodel_18
# from fmodel2 import create_fmodel as create_fmodel_ALP
# from fmodel5 import create_fmodel as create_fmodel_ALP1000
# from foolbox2.attacks.iterative_projected_gradient import MomentumIterativeAttack
from foolbox2.attacks.carlini_wagner import CarliniWagnerL2Attack
from foolbox2.distances import MeanSquaredDistance
from foolbox2.adversarial import Adversarial
# from adversarial_vision_challenge import load_model
# from adversarial_vision_challenge import read_images
# from adversarial_vision_challenge import store_adversarial
# from adversarial_vision_challenge import attack_complete
# from smiterative2 import SAIterativeAttack, RMSIterativeAttack, \
# AdamIterativeAttack, AdagradIterativeAttack
import sys
# from smiterative2 import SAIterativeAttack, RMSIterativeAttack, AdamIterativeAttack, AdagradIterativeAttack
import os
def run_attack(model, image, target_class):
criterion = TargetClass(target_class)
# model == Composite model
# Backward model = substitute model (resnet vgg alex) used to calculate gradients
# Forward model = black-box model
distance = MeanSquaredDistance
attack = CarliniWagnerL2Attack()
# attack = foolbox.attacks.annealer(model, criterion)
# prediction of our black box model on the original image
original_label = np.argmax(model.predictions(image))
adv = Adversarial(model, criterion, image, original_label, distance=distance)
return attack(adv)
def main():
# tf.logging.set_verbosity(tf.logging.INFO)
# instantiate blackbox and substitute model
# instantiate blackbox and substitute model
forward_model = load_model()
# backward_model1 = create_fmodel_18()
# backward_model2 = create_fmodel_ALP()
# backward_model3 = create_fmodel_ALP1000()
# print(backward_model1[0])
# instantiate differntiable composite model
# (predictions from blackbox, gradients from substitute)
# model = CompositeModel(
# forward_model = forward_model,
# backward_model = backward_model2)
model = forward_model
for (file_name, image, label) in read_images():
# pos_salience = find_salience(predictor, image)
adversarial = run_attack(model, image, label)
store_adversarial(file_name, adversarial)
attack_complete()
if __name__ == '__main__':
main()