-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfmodel.py
62 lines (49 loc) · 1.75 KB
/
fmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import tensorflow as tf
import os
from foolbox2.models.tensorflow import TensorFlowModel
from resnet18.resnet_model import Model
def create_model():
graph = tf.Graph()
with graph.as_default():
images = tf.placeholder(tf.float32, (None, 64, 64, 3))
# preprocessing
_R_MEAN = 123.68
_G_MEAN = 116.78
_B_MEAN = 103.94
_CHANNEL_MEANS = [_R_MEAN, _G_MEAN, _B_MEAN]
features = images - tf.constant(_CHANNEL_MEANS)
model = Model(
resnet_size=18,
bottleneck=False,
num_classes=200,
num_filters=64,
kernel_size=3,
conv_stride=1,
first_pool_size=0,
first_pool_stride=2,
second_pool_size=7,
second_pool_stride=1,
block_sizes=[2, 2, 2, 2],
block_strides=[1, 2, 2, 2],
final_size=512,
version=2,
data_format=None)
logits = model(features, False)
# You can add more models here trained on tiny imagenet
# https://github.com/pat-coady/tiny_imagenet/tree/master/src
# add more models here
with tf.variable_scope('utilities'):
saver = tf.train.Saver()
return graph, saver, images, logits
def create_fmodel():
graph, saver, images, logits = create_model()
sess = tf.Session(graph=graph)
path = os.path.dirname(os.path.abspath(__file__))
path = os.path.join(path, 'resnet18', 'checkpoints', 'model')
saver.restore(sess, tf.train.latest_checkpoint(path))
with sess.as_default():
fmodel = TensorFlowModel(images, logits, bounds=(0, 255))
return fmodel
if __name__ == '__main__':
# executable for debuggin and testing
print(create_fmodel())