-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathADCS.c
161 lines (124 loc) · 5.17 KB
/
ADCS.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#include<stdio.h>
#include<math.h>
float Eulers(float I1, float I2, float I3, float omega[], float T[], float* omegax_dot, float* omegay_dot, float* omegaz_dot);
float RK4(float k1, float k2, float k3, float k4, float h, float previous_estimate);
void quaternions(float omega[], float epsilon[], float eta, float* eta_dot, float *epsilon_dot);
void Rotation_Matrix_Body(float epsilon[], float eta, float C_b_ECI[3][3]);
void Dipole_mapping()
//Matrix operations
void cross_prod(float *a, float *b, float *c);
void dot_prod(float *a, float *b, float *c);
void matmul(int m, int n, int p, float A[m][n], float B[n][p], float C[m][p]);
void vector_add(float *a, float *b, float *c);
void vector_times_scalar(float *a, float b, float *c);
/*variables
%The value of T is the torque we apply on the spacecraft-this will be calculated,
for now just leave as a constant*/
//For Euler's Equations
float T[3] ={1,5,7};
float omega[3]={0.01745, 1, 2};
float I1=1; float I2=2; float I3=3;
float omegax_dot, omegay_dot, omegaz_dot;
// All omega_previous are initialized by sampling the gyros to read the body rates.
float omegax, omegay, omegaz, omegax_previous, omegay_previous, omegaz_previous;
//For calculationg the Quaternions
float epsilon[3]={1,2,3}; float eta=1; //These are the initial values of the quaternions
float eta_dot; float epsilon_dot[3];
float C_b_ECI[3][3];
int main(){
// Step 1: Initialize the omegax_previous, omegy_previous and omegaz_previous to the measurments obtained from the gyro
// step 2: Run Euler's function
// step 3: use multiple outputs of Euler's function to integrate for omegax, omegay, omegaz using RK4 method.
// Step 4: Pass the outputs of the integrator to the quaternions function
// Step 5: Pass the quaternions to the Rotation_Matrix function
// step 6: Initialize the S_ECI vector in body-(Just a random guess)
// step 7: Use the roation matrix to calculate S_b and S_s from S_ECI
// step 8: Convert S_s to plane coordinate xp and yp
// Step 9: Read info from Solar panels to determine if eclipse
// Step 10: EKF
// Step 11: Convert back to sensor and then body sun measurments
// step 12: Pass states to controller and calculate output torque
// step 13: mapping and saturation
// Torque actuation
// step 14: Calculate T to feedback into Euler's method
// step 15: backup function to "nudge" the spacecraft if it doesn't see the sun for some n amout of time
Eulers(I1, I2, I3, omega, T, &omegax_dot, &omegay_dot, &omegaz_dot);
//Insert step 3 here.
quaternions(omega, epsilon, eta, &eta_dot, epsilon_dot);
printf("dot product is %f %f %f %f", epsilon_dot[0], epsilon_dot[1], epsilon_dot[2], eta_dot);
return (0);
}
float Eulers(float I1, float I2, float I3, float omega[], float T[], float* omegax_dot, float* omegay_dot, float* omegaz_dot){
*omegax_dot = I1/(T[0]-(I3-I2)*omega[1]*omega[2]);
*omegay_dot = I2/(T[1]-(I1-I3)*omega[0]*omega[2]);
*omegaz_dot = I3/(T[2]-(I2-I1)*omega[0]*omega[1]);
return(*omegax_dot, *omegay_dot, *omegaz_dot);
}
float RK4(float k1, float k2, float k3, float k4, float h, float previous_estimate){
// Numerical integration using the Runge Kutta 4 method
// To calculate the rk4 method, we need to sample we need 3 data points from Euler's equation, seperated by some time step h/2
//k1=f(t), k2=k3=f(t+h/2), k4=f(t+h)
float apriori_estimate=previous_estimate+(1/6)*h*(k1+k2+k3+k4);
return apriori_estimate;
}
void quaternions(float omega[], float epsilon[], float eta, float* eta_dot, float *epsilon_dot) {
// This function takes in the initial values of eta and epsilon and calculates eta_dot and epsilon_dot
// eta_dot and epsilon_dot then get integrated using RK4 to find eta and epsilon, repeat.
//Calculating eta
float c_dot;
dot_prod(omega,epsilon, &c_dot);
*eta_dot=-0.5*c_dot;
//Calculating Epsilon
float epsilon_cross_omega[3];
float eta_times_omega[3];
float sum[3];
cross_prod(epsilon, omega, epsilon_cross_omega);
vector_times_scalar(omega, eta, eta_times_omega);
vector_add(epsilon_cross_omega, eta_times_omega,sum);
vector_times_scalar(sum, 0.5, epsilon_dot);
}
void Rotation_Matrix_Body(float epsilon[], float eta, float C_b_ECI[3][3]){
float e1=epsilon[0]; float e2=epsilon[1]; float e3=epsilon[2];
//First row
C_b_ECI[1][1]=1-2*(e2*e2+e3*e3);
C_b_ECI[1][2]=2*(e1*eta+e3*eta);
C_b_ECI[1][3]=2*(e1*e3-e2*eta);
}
void Dipole_mapping(){
}
//Matrix Math functions
void dot_prod(float *a, float *b, float *c)
{
*c = a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
}
void cross_prod(float *a, float *b, float *c)
{
c[0] = a[1]*b[2] - a[2]*b[1];
c[1] = a[2]*b[0] - a[0]*b[2];
c[2] = a[0]*b[1] - a[1]*b[0];
}
void matmul(int m, int n, int p, float A[m][n], float B[n][p], float C[m][p])
{
int i,j,k;
for(i=0; i < m; i++){
for(j=0; j < p; j++){
C[i][j] = 0;
for(k=0; k < n; k++){
C[i][j] += A[i][k]*B[k][j];
}
}
}
}
void vector_add(float *a, float *b, float *c)
{
c[0] = a[0]+b[0];
c[1] = a[1]+b[1];
c[2] = a[2]+b[2];
}
void vector_times_scalar(float *a, float b, float *c)
{
//a is the vector, b is the scalar
c[0] = a[0]*b;
c[1] = a[1]*b;
c[2] = a[2]*b;
}