forked from vietdelta/TrafficCounting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraffic_counting.py
163 lines (119 loc) · 4.33 KB
/
traffic_counting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import cv2
import numpy as np
import time
import copy
import os
import glob
import multiprocessing as mpr
from datetime import datetime
import argparse
from kalman_filter import KalmanFilter
from tracker import Tracker
from yolo import YOLO, detect_video
if __name__ == '__main__':
parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
parser.add_argument(
'--image', default=False, action="store_true",
help='Image detection mode, will ignore all positional arguments'
)
parser.add_argument(
"--input", nargs='?', type=str,required=False,default='./path2your_video',
help = "Video input path"
)
FLAGS = parser.parse_args()
if FLAGS.image:
1
elif "input" in FLAGS:
hihi = YOLO(**vars(FLAGS))
else:
print("Must specify at least video_input_path. See usage with --help.")
FPS = 60
'''
Distance to line in road: ~0.025 miles
'''
ROAD_DIST_MILES = 0.001
'''
Speed limit of urban freeways in California (50-65 MPH)
'''
HIGHWAY_SPEED_LIMIT = 60
# Initial background subtractor and text font
fgbg = cv2.createBackgroundSubtractorMOG2()
centers = []
# y-cooridinate for speed detection line
Y_THRESH = 160
font = cv2.FONT_HERSHEY_PLAIN
blob_min_width_far = 50
blob_min_height_far = 50
blob_min_width_near = 50
blob_min_height_near = 50
frame_start_time = None
# Create object tracker
tracker = Tracker(80, 3, 2, 1)
# Capture livestream
cap = cv2.VideoCapture ('test2.mp4')
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(1,1))
while True:
centers = []
frame_start_time = datetime.utcnow()
ret, frame = cap.read()
pts = np.array( [[[0,0],[1280,0],[1280,720],[1080,720],[980,180],[830,180],[0,530]]], dtype=np.int32 )
cv2.fillPoly( frame, pts, 0 )
frame2 = frame
frame,boxes = hihi.detect_image(frame)
# Draw line used for speed detection
cv2.line(frame,(0, Y_THRESH),(640, Y_THRESH),(255,0,0),2)
for cnt in boxes:
x, y, w, h = cnt
if y > Y_THRESH:
if w >= blob_min_width_near and h >= blob_min_height_near:
center = np.array ([[x+w/2], [y+h/2]])
centers.append(np.round(center))
cv2.rectangle(frame2, (x, y), (x+w, y+h), (0, 255, 0), 2)
else:
if w >= blob_min_width_far and h >= blob_min_height_far:
center = np.array ([[x+w/2], [y+h/2]])
centers.append(np.round(center))
cv2.rectangle(frame2, (x, y), (x+w, y+h), (0, 255, 0), 2)
if centers:
tracker.update(centers)
for vehicle in tracker.tracks:
if len(vehicle.trace) > 1:
for j in range(len(vehicle.trace)-1):
x1 = vehicle.trace[j][0][0]
y1 = vehicle.trace[j][1][0]
x2 = vehicle.trace[j+1][0][0]
y2 = vehicle.trace[j+1][1][0]
try:
trace_i = len(vehicle.trace) - 1
trace_x = vehicle.trace[trace_i][0][0]
trace_y = vehicle.trace[trace_i][1][0]
if trace_y <= Y_THRESH + 5 and trace_y >= Y_THRESH - 5 and not vehicle.passed:
cv2.putText(frame, 'I PASSED!', (int(trace_x), int(trace_y)), font, 1, (0, 255, 255), 1, cv2.LINE_AA)
vehicle.passed = True
load_lag = (datetime.utcnow() - frame_start_time).total_seconds()
time_dur = (datetime.utcnow() - vehicle.start_time).total_seconds() - load_lag
time_dur /= 60
time_dur /= 60
vehicle.mph = ROAD_DIST_MILES / time_dur
'''if vehicle.mph > HIGHWAY_SPEED_LIMIT:
print ('Quá tốc độ!')
cv2.circle(frame2, (int(trace_x), int(trace_y)), 20, (0, 0, 255), 2)
cv2.putText(frame2, 'MPH: %s' % int(vehicle.mph), (int(trace_x), int(trace_y)), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
cv2.imwrite('speeding_%s.png' % vehicle.track_id, orig_frame)'''
if vehicle.passed and vehicle.mph > 10:
cv2.putText(frame2, '%s km/h' % int(vehicle.mph), (int(trace_x), int(trace_y)), font, 2, (0, 0, 255), 1, cv2.LINE_AA)
except:
pass
# Display all images
cv2.imshow ('original', frame2)
# Quit when escape key pressed
if cv2.waitKey(5) == 27:
break
# Sleep to keep video speed consistent
time.sleep(1.0 / FPS)
# Clean up
cap.release()
cv2.destroyAllWindows()
# remove all speeding_*.png images created in runtime
for file in glob.glob('speeding_*.png'):
os.remove(file)