-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImage_coloring.py
228 lines (172 loc) · 7.8 KB
/
Image_coloring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import cv2
from cv2 import cvtColor
import numpy as np
import matplotlib.pyplot as plt
import skimage
from skimage import data, filters, color, morphology
from skimage.segmentation import flood, flood_fill
from skimage.morphology import skeletonize
from skimage import data
import matplotlib.pyplot as plt
from skimage.util import invert
class Image():
def __init__(self,filename):
self.filename = filename
def set_color(self,color):
self._color = color
def get_color(self):
return self._color
def set_palette(self,palette):
self._palette = palette
def get_palette(self):
return self._palette
def set_edge(self,dict_connect):
self._edge = dict_connect
def get_edge(self):
return self._edge
def set_image(self,img):
self._img = img
def get_image(self):
return self._img
def set_skel(self,img):
self._skel_img = img
def get_skel(self):
return self._skel_img
def get_neighbor_and_edge_pixel(self,i,j,r):
ori_img = self._skel_img
c = self._skel_img[i][j]
neighbor = [(i,j)]
taboo = [(i,j)]
edge = []
neig_graph = []
relev_pixel = []
while len(neighbor) > 0:
if self._skel_img[neighbor[0][0]][neighbor[0][1]] == c:
self._skel_img[neighbor[0][0]][neighbor[0][1]] = r
if neighbor[0][0] - 1 >= 0:
if self._skel_img[neighbor[0][0]-1][neighbor[0][1]] == c or self._skel_img[neighbor[0][0]-1][neighbor[0][1]] == 255:
neighbor.append((neighbor[0][0]-1,neighbor[0][1]))
taboo.append((neighbor[0][0]-1,neighbor[0][1]))
if neighbor[0][0] + 1 < self._skel_img.shape[0]:
if self._skel_img[neighbor[0][0]+1][neighbor[0][1]] == c or self._skel_img[neighbor[0][0]+1][neighbor[0][1]] == 255:
neighbor.append((neighbor[0][0]+1,neighbor[0][1]))
taboo.append((neighbor[0][0]+1,neighbor[0][1]))
if neighbor[0][1] - 1 >= 0:
if self._skel_img[neighbor[0][0]][neighbor[0][1]-1] == c or self._skel_img[neighbor[0][0]][neighbor[0][1]-1] == 255:
neighbor.append((neighbor[0][0],neighbor[0][1]-1))
taboo.append((neighbor[0][0],neighbor[0][1]-1))
if neighbor[0][1] + 1 < self._skel_img.shape[1]:
if self._skel_img[neighbor[0][0]][neighbor[0][1]+1] == c or self._skel_img[neighbor[0][0]][neighbor[0][1]+1] == 255:
neighbor.append((neighbor[0][0],neighbor[0][1]+1))
taboo.append((neighbor[0][0],neighbor[0][1]+1))
elif self._skel_img[neighbor[0][0]][neighbor[0][1]] == 255:
edge.append((neighbor[0][0],neighbor[0][1]))
neighbor.pop(0)
for index in edge:
min_i = max(index[0]-1,0)
min_j = max(index[1]-1,0)
max_i = min(index[0]+1,self._skel_img.shape[0]-1)
max_j = min(index[1]+1,self._skel_img.shape[1]-1)
for i in range(min_i,max_i+1):
for j in range(min_j,max_j+1):
if self._skel_img[i][j] != r and self._skel_img[i][j] != 255:
neig_graph.append((i,j))
if self._skel_img[i][j] == r and self._skel_img[i][j] != 255:
relev_pixel.append((i,j))
self._skel_img = ori_img
return neig_graph, relev_pixel
def get_nodes(self):
return self._nodes
def set_nodes(self):
ori_img = self._skel_img
node_img = []
for i,x in enumerate(self._skel_img):
for j,y in enumerate(x):
if self._skel_img[i][j] == 0:
node_img.append((i,j))
self._skel_img = flood_fill(self._skel_img, (i,j), 127,connectivity=1)
self._skel_img = ori_img
self._nodes = node_img
def flood_fill_rgb(self,img,i,j,r):
c = np.zeros_like(img[i][j])
c[:] = img[i][j][:]
neighbor = [(i,j)]
while len(neighbor) > 0:
if (img[neighbor[0][0]][neighbor[0][1]] == c).all():
img[neighbor[0][0]][neighbor[0][1]][:] = r[:]
if neighbor[0][0] - 1 >= 0:
if (img[neighbor[0][0]-1][neighbor[0][1]] == c).all():
neighbor.append((neighbor[0][0]-1,neighbor[0][1]))
if neighbor[0][0] + 1 < img.shape[0]:
if (img[neighbor[0][0]+1][neighbor[0][1]] == c).all():
neighbor.append((neighbor[0][0]+1,neighbor[0][1]))
if neighbor[0][1] - 1 >= 0:
if (img[neighbor[0][0]][neighbor[0][1]-1] == c).all():
neighbor.append((neighbor[0][0],neighbor[0][1]-1))
if neighbor[0][1] + 1 < img.shape[1]:
if (img[neighbor[0][0]][neighbor[0][1]+1] == c).all():
neighbor.append((neighbor[0][0],neighbor[0][1]+1))
neighbor.pop(0)
def main():
image = Image(input("Masukkan file gambar:"))
image.set_image(cv2.imread(image.filename,cv2.IMREAD_GRAYSCALE))
ret,thresh1 = cv2.threshold(image.get_image(),127,255,cv2.THRESH_BINARY)
image.set_skel(skeletonize(invert(thresh1)/255)*255)
image.set_nodes()
neigs = {}
homes = {}
node_img = image.get_nodes()
for i,j in node_img:
if (i,j) not in neigs.keys():
neigs[(i,j)] = []
neig,home= image.get_neighbor_and_edge_pixel(i,j,127)
neigs[(i,j)].append(neig)
neigs[(i,j)].append(home)
dict_connect = {}
for x in neigs.items():
for y in neigs.items():
if x[0] not in dict_connect.keys():
dict_connect[x[0]] = {}
if x[0] != y[0]:
dict_connect[x[0]][y[0]] = False
for nodes in neigs.items():
node_neig = nodes[1][0]
node_home = nodes[1][1]
for neig in node_neig:
for node_s in neigs.items():
node_s_neig = node_s[1][0]
node_s_home = node_s[1][1]
if nodes[0] != node_s[0] and not(dict_connect[nodes[0]][node_s[0]]) and neig in node_s_home:
dict_connect[nodes[0]][node_s[0]] = True
image.set_edge(dict_connect)
color_avl = {}
for y in image.get_edge():
color_avl[y] =[x for x in range(len(image.get_edge()))]
color_acr = [0 for x in range(len(image.get_edge()))]
for i,x in enumerate(image.get_edge()):
color_acr[i] = color_avl[x][0]
for j,y in enumerate(image.get_edge()[x]):
if image.get_edge()[x][y]:
# print(x,y,color_acr[i])
try:
color_avl[y].pop(color_avl[y].index(color_acr[i]))
except ValueError:
pass
image.set_color(color_acr)
pallete = [[255,0,0],[0,255,0],[0,0,255],[255,255,0],[255,0,255],[0,255,255],[127,150,0],[150,0,127]]
image.set_palette(pallete)
img_rgb = np.stack((image.get_skel(),)*3, axis=-1)
cv2.imwrite('skeleton_not_colored.jpg',img_rgb)
for index,(i,j) in enumerate(image.get_nodes()):
image.flood_fill_rgb(img_rgb,i,j,np.array(image.get_palette()[image.get_color()[index]]))
ori_img_rgb = np.stack((image.get_image(),)*3, axis=-1)
ret,thresh1 = cv2.threshold(ori_img_rgb,127,255,cv2.THRESH_BINARY)
for i,x in enumerate(thresh1):
for j,y in enumerate(x):
if (y == np.array([0,0,0])).all():
img_rgb[i][j][:] = y[:]
img_rgb= np.array(img_rgb, dtype=np.uint8)
img_rgb = cvtColor(img_rgb,cv2.COLOR_RGB2BGR)
cv2.imwrite('skeletoncolored.jpg',img_rgb)
if __name__ == '__main__':
main()