|
| 1 | +#include "cnnl_kernel.hh" |
| 2 | + |
| 3 | +#ifdef USE_BANG |
| 4 | +#include "../../utilities/bang/cnnl_context.hh" |
| 5 | +#include "../../utilities/bang/cnnl_functions.h" |
| 6 | +#endif |
| 7 | + |
| 8 | + |
| 9 | +namespace refactor::kernel { |
| 10 | + using K = CastCnnl; |
| 11 | + using DT = DataType; |
| 12 | + |
| 13 | + K::CastCnnl(decltype(from) from_, |
| 14 | + decltype(to) to_, |
| 15 | + decltype(shape) shape_) noexcept |
| 16 | + : from(from_), to(to_), shape(shape_) {} |
| 17 | + |
| 18 | + auto K::build(Tensor const &from, Tensor const &to) noexcept -> KernelBox { |
| 19 | +#ifndef USE_BANG |
| 20 | + return nullptr; |
| 21 | +#endif |
| 22 | + |
| 23 | + return std::make_unique<K>(from.dataType, to.dataType, |
| 24 | + std::vector<int>(from.shape.begin(), from.shape.end())); |
| 25 | + } |
| 26 | + auto K::typeId() noexcept -> size_t { |
| 27 | + static uint8_t ID = 1; |
| 28 | + return reinterpret_cast<size_t>(&ID); |
| 29 | + } |
| 30 | + |
| 31 | + auto K::kernelTypeId() const noexcept -> size_t { |
| 32 | + return typeId(); |
| 33 | + } |
| 34 | + auto K::description() const noexcept -> std::string_view { |
| 35 | + return "Performing cast operation using CNNL"; |
| 36 | + } |
| 37 | + |
| 38 | +#ifdef USE_BANG |
| 39 | + |
| 40 | + static cnnlCastDataType_t castType(DataType from, DataType to); |
| 41 | + |
| 42 | + auto K::lower(Resources &res) const -> RoutineWorkspace { |
| 43 | + using namespace cnnl; |
| 44 | + using namespace runtime; |
| 45 | + |
| 46 | + struct Descriptors { |
| 47 | + cnnlTensorDescriptor_t inDesc, outDesc; |
| 48 | + cnnlCastDataType_t cast; |
| 49 | + |
| 50 | + Descriptors() : inDesc(nullptr), outDesc(nullptr) { |
| 51 | + CNNL_ASSERT(cnnlCreateTensorDescriptor(&inDesc)); |
| 52 | + CNNL_ASSERT(cnnlCreateTensorDescriptor(&outDesc)); |
| 53 | + } |
| 54 | + ~Descriptors() noexcept(false) { |
| 55 | + CNNL_ASSERT(cnnlDestroyTensorDescriptor(inDesc)); |
| 56 | + CNNL_ASSERT(cnnlDestroyTensorDescriptor(outDesc)); |
| 57 | + } |
| 58 | + }; |
| 59 | + auto d = std::make_shared<Descriptors>(); |
| 60 | + d->cast = castType(from, to); |
| 61 | + setCnnlTensor(d->inDesc, from, slice(shape.data(), shape.size())); |
| 62 | + setCnnlTensor(d->outDesc, to, slice(shape.data(), shape.size())); |
| 63 | + |
| 64 | + res.fetchOrStore<CnnlContext>(); |
| 65 | + return [d = std::move(d)](Resources &res, void *workspace, void const *const *inputs, void *const *outputs) { |
| 66 | + CNNL_ASSERT(cnnlCastDataType(res.fetchOrStore<CnnlContext>()->handle, |
| 67 | + d->inDesc, inputs[0], d->cast, d->outDesc, outputs[0])); |
| 68 | + // BANG_ASSERT(cnrtQueueSync(res.fetchOrStore<CnnlContext>()->queue)); |
| 69 | + }; |
| 70 | + } |
| 71 | + |
| 72 | + static cnnlCastDataType_t castType(DataType from, DataType to) { |
| 73 | + switch (from) { |
| 74 | + case DT::F32: |
| 75 | + switch (to) { |
| 76 | + case DT::F64: |
| 77 | + return CNNL_CAST_FLOAT_TO_DOUBLE; |
| 78 | + case DT::FP16: |
| 79 | + return CNNL_CAST_FLOAT_TO_HALF; |
| 80 | + case DT::I64: |
| 81 | + return CNNL_CAST_FLOAT_TO_INT64; |
| 82 | + case DT::I32: |
| 83 | + return CNNL_CAST_FLOAT_TO_INT32; |
| 84 | + case DT::I16: |
| 85 | + return CNNL_CAST_FLOAT_TO_INT16; |
| 86 | + case DT::I8: |
| 87 | + return CNNL_CAST_FLOAT_TO_INT8; |
| 88 | + case DT::U8: |
| 89 | + return CNNL_CAST_FLOAT_TO_UINT8; |
| 90 | + // case DT::BF16: |
| 91 | + // return CNNL_CAST_FLOAT_TO_BFLOAT16; |
| 92 | + case DT::Bool: |
| 93 | + return CNNL_CAST_FLOAT_TO_BOOL; |
| 94 | + default: |
| 95 | + UNREACHABLE(); |
| 96 | + } |
| 97 | + case DT::FP16: |
| 98 | + switch (to) { |
| 99 | + case DT::F32: |
| 100 | + return CNNL_CAST_HALF_TO_FLOAT; |
| 101 | + case DT::I64: |
| 102 | + return CNNL_CAST_HALF_TO_INT64; |
| 103 | + case DT::I32: |
| 104 | + return CNNL_CAST_HALF_TO_INT32; |
| 105 | + case DT::I16: |
| 106 | + return CNNL_CAST_HALF_TO_INT16; |
| 107 | + case DT::I8: |
| 108 | + return CNNL_CAST_HALF_TO_INT8; |
| 109 | + case DT::U8: |
| 110 | + return CNNL_CAST_HALF_TO_UINT8; |
| 111 | + case DT::Bool: |
| 112 | + return CNNL_CAST_HALF_TO_BOOL; |
| 113 | + default: |
| 114 | + UNREACHABLE(); |
| 115 | + } |
| 116 | + case DT::I32: |
| 117 | + switch (to) { |
| 118 | + case DT::F32: |
| 119 | + return CNNL_CAST_INT32_TO_FLOAT; |
| 120 | + case DT::FP16: |
| 121 | + return CNNL_CAST_INT32_TO_HALF; |
| 122 | + case DT::I64: |
| 123 | + return CNNL_CAST_INT32_TO_INT64; |
| 124 | + case DT::I16: |
| 125 | + return CNNL_CAST_INT32_TO_INT16; |
| 126 | + case DT::I8: |
| 127 | + return CNNL_CAST_INT32_TO_INT8; |
| 128 | + case DT::Bool: |
| 129 | + return CNNL_CAST_INT32_TO_BOOL; |
| 130 | + default: |
| 131 | + UNREACHABLE(); |
| 132 | + } |
| 133 | + case DT::I16: |
| 134 | + switch (to) { |
| 135 | + case DT::F32: |
| 136 | + return CNNL_CAST_INT16_TO_FLOAT; |
| 137 | + case DT::FP16: |
| 138 | + return CNNL_CAST_INT16_TO_HALF; |
| 139 | + case DT::I32: |
| 140 | + return CNNL_CAST_INT16_TO_INT32; |
| 141 | + // case DT::I8: |
| 142 | + // return CNNL_CAST_INT16_TO_INT8; |
| 143 | + default: |
| 144 | + UNREACHABLE(); |
| 145 | + } |
| 146 | + case DT::I8: |
| 147 | + switch (to) { |
| 148 | + case DT::F32: |
| 149 | + return CNNL_CAST_INT8_TO_FLOAT; |
| 150 | + case DT::FP16: |
| 151 | + return CNNL_CAST_INT8_TO_HALF; |
| 152 | + case DT::I32: |
| 153 | + return CNNL_CAST_INT8_TO_INT32; |
| 154 | + case DT::I16: |
| 155 | + return CNNL_CAST_INT8_TO_INT16; |
| 156 | + default: |
| 157 | + UNREACHABLE(); |
| 158 | + } |
| 159 | + case DT::U8: |
| 160 | + switch (to) { |
| 161 | + case DT::F32: |
| 162 | + return CNNL_CAST_UINT8_TO_FLOAT; |
| 163 | + case DT::FP16: |
| 164 | + return CNNL_CAST_UINT8_TO_HALF; |
| 165 | + case DT::I64: |
| 166 | + return CNNL_CAST_UINT8_TO_INT64; |
| 167 | + case DT::I32: |
| 168 | + return CNNL_CAST_UINT8_TO_INT32; |
| 169 | + default: |
| 170 | + UNREACHABLE(); |
| 171 | + } |
| 172 | + case DT::Bool: |
| 173 | + switch (to) { |
| 174 | + case DT::F32: |
| 175 | + return CNNL_CAST_BOOL_TO_FLOAT; |
| 176 | + case DT::FP16: |
| 177 | + return CNNL_CAST_BOOL_TO_HALF; |
| 178 | + case DT::I32: |
| 179 | + return CNNL_CAST_BOOL_TO_INT32; |
| 180 | + default: |
| 181 | + UNREACHABLE(); |
| 182 | + } |
| 183 | + case DT::I64: |
| 184 | + switch (to) { |
| 185 | + case DT::F32: |
| 186 | + return CNNL_CAST_INT64_TO_FLOAT; |
| 187 | + case DT::FP16: |
| 188 | + return CNNL_CAST_INT64_TO_HALF; |
| 189 | + case DT::I32: |
| 190 | + return CNNL_CAST_INT64_TO_INT32; |
| 191 | + case DT::U32: |
| 192 | + return CNNL_CAST_INT64_TO_UINT32; |
| 193 | + default: |
| 194 | + UNREACHABLE(); |
| 195 | + } |
| 196 | + case DT::U32: |
| 197 | + switch (to) { |
| 198 | + case DT::I64: |
| 199 | + return CNNL_CAST_UINT32_TO_INT64; |
| 200 | + case DT::U64: |
| 201 | + return CNNL_CAST_UINT32_TO_UINT64; |
| 202 | + default: |
| 203 | + UNREACHABLE(); |
| 204 | + } |
| 205 | + case DT::F64: |
| 206 | + switch (to) { |
| 207 | + case DT::F32: |
| 208 | + return CNNL_CAST_DOUBLE_TO_FLOAT; |
| 209 | + default: |
| 210 | + UNREACHABLE(); |
| 211 | + } |
| 212 | + case DT::BF16: |
| 213 | + switch (to) { |
| 214 | + // case DT::F32: |
| 215 | + // return CNNL_CAST_BF16_TO_FLOAT; |
| 216 | + default: |
| 217 | + UNREACHABLE(); |
| 218 | + } |
| 219 | + default: |
| 220 | + UNREACHABLE(); |
| 221 | + } |
| 222 | + } |
| 223 | + |
| 224 | +#endif |
| 225 | + |
| 226 | +}// namespace refactor::kernel |
0 commit comments