This repository has been archived by the owner on Nov 19, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathREADME.Rmd
268 lines (206 loc) · 10.6 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
## `{broomExtra}`: Enhancement for `{broom}` and `{easystats}`
[![lifecycle](https://img.shields.io/badge/lifecycle-deprecated-red.svg)](https://lifecycle.r-lib.org/articles/stages.html#deprecated)
<img src="man/figures/logo.png" align="right" width="240" />
<!-- The goal of `{broomExtra}` is to provide helper functions that assist in data -->
<!-- analysis workflows involving regression analyses. The goal is to combine the -->
<!-- functionality offered by different set of packages through a common syntax to -->
<!-- return tidy tibbles containing model parameters and summaries. -->
<!-- It combines functionality from `{broom}` and `{easystats}` ecosystems, and this package has the -->
<!-- following advantages over the underlying individual packages (see examples -->
<!-- below for concrete instantiations of these benefits): -->
<!-- - Covers more number of regression models than these individual packages. -->
<!-- - If possible to compute, the output tibbles contains a *p*-value column. -->
<!-- - More robust to extraneous input arguments that might sometimes cause -->
<!-- problems for the underlying methods. -->
<!-- - Follows consistent `{tidymodels}` column-naming schema. -->
<!-- - Returns a more comprehensive model performance measure summary. -->
<!-- If you want to add support for a regression model, the natural place to do this -->
<!-- would be to contribute either to `{broom}` or to `{parameters}`. -->
This package has been archived on CRAN. Additionally, it is deprecated in favour of the [easystats](https://easystats.github.io/easystats/) project.
The package can still be downloaded from GitHub:
`pak::pak("IndrajeetPatil/broomExtra")`
<!-- ## Lifecycle -->
<!-- Function | Lifecycle -->
<!-- ------------------------ | ----- -->
<!-- `tidy_parameters` | [![lifecycle](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://lifecycle.r-lib.org/articles/stages.html) -->
<!-- `glance_performance` | [![lifecycle](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://lifecycle.r-lib.org/articles/stages.html) -->
<!-- `tidy`, `glance`, `augment` | [![lifecycle](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://lifecycle.r-lib.org/articles/stages.html) -->
<!-- `grouped_tidy`, `grouped_glance`, `grouped_augment` | [![lifecycle](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://lifecycle.r-lib.org/articles/stages.html) -->
<!-- ## Hybrid generics -->
<!-- The `{broom}`-family of packages are not the only ones which return such tidy -->
<!-- summaries for model parameters and model performance. The `{easystats}`-family of -->
<!-- packages also provide similar functions, more specifically -->
<!-- [parameters](https://easystats.github.io/parameters/) and -->
<!-- [performance](https://easystats.github.io/performance/). Sometimes the `{broom}` -->
<!-- packages might not contain a `tidy`/`glance` method for a given regression -->
<!-- object, while `{easystats}` packages would and *vice versa*. -->
<!-- The hybrid functions in `{broomExtra}` make it easy to retrieve these summaries -->
<!-- with the appropriate method and do so robustly: -->
<!-- - `broom::tidy` + `parameters::model_parameters` = -->
<!-- `broomExtra::tidy_parameters` -->
<!-- - `broom::glance` + `performance::model_performance` = -->
<!-- `broomExtra::glance_performance` -->
<!-- Benefits of using hybrid generics -->
<!-- - The `tidy_parameters` will return a model summary either from `broomExtra::tidy` -->
<!-- or `parameters::model_parameters`, so you get best of the both worlds. -->
<!-- - These functions are robust such that they won't fail if the `...` contains -->
<!-- misspecified arguments. This makes these functions much easier to work with while writing wrapper -->
<!-- functions around `broomExtra::tidy` or `parameters::model_parameters`. -->
<!-- ## Generic functions -->
<!-- Currently, `S3` methods for mixed-effects model objects are included in the -->
<!-- `{broom.mixed}` package, while the rest of the object classes are included in the -->
<!-- `{broom}` package. This means that you constantly need to keep track of the class -->
<!-- of the object (e.g., "if it is `merMod` object, use -->
<!-- `broom.mixed::tidy()`/`broom.mixed::glance()`/`broom.mixed::augment()`, but if -->
<!-- it is `polr` object, use `broom::tidy()`/`broom::glance()`/`broom::augment()`"). -->
<!-- Using generics from `{broomExtra}` means you no longer have to worry about this, -->
<!-- as calling `broomExtra::tidy()`/`broomExtra::glance()`/`broomExtra::augment()` -->
<!-- will search the appropriate method from these two packages and return the -->
<!-- results. -->
<!-- #### tidy dataframe -->
<!-- Let's get a tidy tibble back containing results from various regression models. -->
<!-- ```{r tidy, error = TRUE} -->
<!-- set.seed(123) -->
<!-- library(lme4) -->
<!-- library(ordinal) -->
<!-- library(broomExtra) -->
<!-- library(dplyr) -->
<!-- ## mixed-effects models (`{broom.mixed}` will be used) -->
<!-- lmm.mod <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) -->
<!-- broomExtra::tidy(x = lmm.mod, effects = "fixed") -->
<!-- ## linear model (`{broom}` will be used) -->
<!-- lm.mod <- lm(Reaction ~ Days, sleepstudy) -->
<!-- broomExtra::tidy(lm.mod, conf.int = TRUE) -->
<!-- ## another example with `{broom}` -->
<!-- ## cumulative Link Models -->
<!-- clm.mod <- clm(rating ~ temp * contact, data = wine) -->
<!-- broomExtra::tidy(x = clm.mod, exponentiate = TRUE) -->
<!-- ## unsupported object (the function will return `NULL` in such cases) -->
<!-- broomExtra::tidy(list(1, c("x", "y"))) -->
<!-- ``` -->
<!-- #### model summaries -->
<!-- Getting a `tibble` containing model summary and other performance measures. -->
<!-- ```{r glance, error = TRUE} -->
<!-- set.seed(123) -->
<!-- library(lme4) -->
<!-- library(ordinal) -->
<!-- ## mixed-effects model -->
<!-- lmm.mod <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) -->
<!-- broomExtra::glance(lmm.mod) -->
<!-- ## linear model -->
<!-- lm.mod <- lm(Reaction ~ Days, sleepstudy) -->
<!-- broomExtra::glance(lm.mod) -->
<!-- ## another example with `{broom}` -->
<!-- ## cumulative Link Models -->
<!-- clm.mod <- clm(rating ~ temp * contact, data = wine) -->
<!-- broomExtra::glance(clm.mod) -->
<!-- ## in case no glance method is available (`NULL` will be returned) -->
<!-- broomExtra::glance(acf(lh, plot = FALSE)) -->
<!-- ``` -->
<!-- #### augmented dataframe -->
<!-- Getting a `tibble` by augmenting data with information from an object. -->
<!-- ```{r augment, error = TRUE} -->
<!-- set.seed(123) -->
<!-- library(lme4) -->
<!-- library(ordinal) -->
<!-- ## mixed-effects model -->
<!-- lmm.mod <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) -->
<!-- broomExtra::augment(lmm.mod) -->
<!-- ## linear model -->
<!-- lm.mod <- lm(Reaction ~ Days, sleepstudy) -->
<!-- broomExtra::augment(lm.mod) -->
<!-- ## another example with `{broom}` -->
<!-- ## cumulative Link Models -->
<!-- clm.mod <- clm(rating ~ temp * contact, data = wine) -->
<!-- broomExtra::augment(x = clm.mod, newdata = wine, type.predict = "prob") -->
<!-- ## in case no augment method is available (`NULL` will be returned) -->
<!-- broomExtra::augment(stats::anova(stats::lm(wt ~ am, mtcars))) -->
<!-- ``` -->
<!-- ## `grouped_` variants of generics -->
<!-- `grouped` variants of the generic functions (`tidy`, `glance`, and `augment`) -->
<!-- make it easy to execute the same analysis for all combinations of grouping -->
<!-- variable(s) in a dataframe. Currently, these functions work only for methods -->
<!-- that depend on a `data` argument (e.g., `stats::lm`), but not for functions that -->
<!-- don't (e.g., `stats::prop.test()`). -->
<!-- #### `grouped_tidy` -->
<!-- ```{r grouped_tidy} -->
<!-- ## to speed up computation, let's use only 50% of the data -->
<!-- set.seed(123) -->
<!-- library(lme4) -->
<!-- library(ggplot2) -->
<!-- library(broomExtra) -->
<!-- ## linear model (tidy analysis across grouping combinations) -->
<!-- grouped_tidy( -->
<!-- data = sample_frac(ggplot2::diamonds, size = 0.5), -->
<!-- grouping.vars = c(cut, color), -->
<!-- formula = price ~ carat - 1, -->
<!-- ..f = stats::lm, -->
<!-- na.action = na.omit, -->
<!-- tidy.args = list(quick = TRUE) -->
<!-- ) -->
<!-- ## linear mixed effects model (tidy analysis across grouping combinations) -->
<!-- grouped_tidy( -->
<!-- data = sample_frac(ggplot2::diamonds, size = 0.5), -->
<!-- grouping.vars = cut, -->
<!-- ..f = lme4::lmer, -->
<!-- formula = price ~ carat + (carat | color) - 1, -->
<!-- control = lme4::lmerControl(optimizer = "bobyqa"), -->
<!-- tidy.args = list(conf.int = TRUE, conf.level = 0.99) -->
<!-- ) -->
<!-- ``` -->
<!-- #### `grouped_glance` -->
<!-- ```{r grouped_glance} -->
<!-- ## to speed up computation, let's use only 50% of the data -->
<!-- set.seed(123) -->
<!-- ## linear model (model summaries across grouping combinations) -->
<!-- grouped_glance( -->
<!-- data = sample_frac(ggplot2::diamonds, size = 0.5), -->
<!-- grouping.vars = c(cut, color), -->
<!-- formula = price ~ carat - 1, -->
<!-- ..f = stats::lm, -->
<!-- na.action = na.omit -->
<!-- ) -->
<!-- ## linear mixed effects model (model summaries across grouping combinations) -->
<!-- grouped_glance( -->
<!-- data = sample_frac(ggplot2::diamonds, size = 0.5), -->
<!-- grouping.vars = cut, -->
<!-- ..f = lme4::lmer, -->
<!-- formula = price ~ carat + (carat | color) - 1, -->
<!-- control = lme4::lmerControl(optimizer = "bobyqa") -->
<!-- ) -->
<!-- ``` -->
<!-- #### `grouped_augment` -->
<!-- ```{r grouped_augment} -->
<!-- ## to speed up computation, let's use only 50% of the data -->
<!-- set.seed(123) -->
<!-- ## linear model -->
<!-- grouped_augment( -->
<!-- data = ggplot2::diamonds, -->
<!-- grouping.vars = c(cut, color), -->
<!-- ..f = stats::lm, -->
<!-- formula = price ~ carat - 1 -->
<!-- ) -->
<!-- ## linear mixed-effects model -->
<!-- grouped_augment( -->
<!-- data = sample_frac(ggplot2::diamonds, size = 0.5), -->
<!-- grouping.vars = cut, -->
<!-- ..f = lme4::lmer, -->
<!-- formula = price ~ carat + (carat | color) - 1, -->
<!-- control = lme4::lmerControl(optimizer = "bobyqa") -->
<!-- ) -->
<!-- ``` -->
## Acknowledgments
The hexsticker was generously designed by Sarah Otterstetter (Max Planck
Institute for Human Development, Berlin). Thanks are also due to the maintainers
and contributors to `{broom}`- and `{easystats}`-package families who have indulged
in all my feature requests!