-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEEGNet.py
56 lines (45 loc) · 1.82 KB
/
EEGNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import numpy as np
import mne
from glob import glob
import pandas as pd
class EEGNet(nn.Module):
def __init__(self, num_classes = 3):
super(EEGNet, self).__init__()
# Première couche de convolution
self.conv1 = nn.Conv2d(in_channels=4, out_channels=2, kernel_size=(1, 4), stride=1, padding=(0, 2))
self.batch_norm1 = nn.BatchNorm2d(2)
self.activation1 = nn.ReLU()
# Ajouter la couche depthwise
self.depthwise_conv1 = nn.Conv2d(in_channels=2, out_channels=4, kernel_size=(2, 1), stride=1, padding=0)
self.batch_norm2 = nn.BatchNorm2d(4)
self.activation2 = nn.ReLU()
# Définir une couche conv2 (si nécessaire)
self.conv2 = nn.Conv2d(in_channels=4, out_channels=8, kernel_size=(1, 3), stride=1, padding=(0, 1)) # Par exemple
self.batch_norm3 = nn.BatchNorm2d(8)
self.activation3 = nn.ReLU()
# Couches fully connected
self.fc = nn.Linear(8 * 255 * 2, 64) # 8 * 255 * 2 = 4080
self.out = nn.Linear(64, num_classes) # Par exemple, 28 classes
self.dropout = nn.Dropout(0.5)
def forward(self, x):
# Appliquer les convolutions et activations
x = self.conv1(x)
x = self.batch_norm1(x)
x = self.activation1(x)
x = self.depthwise_conv1(x)
x = self.batch_norm2(x)
x = self.activation2(x)
x = self.conv2(x)
x = self.batch_norm3(x)
x = self.activation3(x)
# Appliquer la couche fully connected
x = x.view(x.size(0), -1) # Aplatir la sortie
x = self.fc(x) # Passer à la couche fully connected
x = self.dropout(x)
x = self.out(x)
return x