forked from kentaroy47/frcnn-from-scratch-with-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_rpn.py
232 lines (175 loc) · 8.81 KB
/
train_rpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from __future__ import division
import random
import pprint
import sys
import time
import numpy as np
from optparse import OptionParser
import pickle
import os
import csv
# gpu setting
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import tensorflow as tf
config2 = tf.compat.v1.ConfigProto()
config2.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config2)
from keras import backend as K
from keras.optimizers import Adam, SGD, RMSprop
from keras.layers import Input
from keras.models import Model, load_model
from keras_frcnn import config, data_generators
from keras_frcnn import losses as loss_func
from keras_frcnn.simple_parser import get_data
from keras.utils import generic_utils, plot_model
sys.setrecursionlimit(40000)
parser = OptionParser()
parser.add_option("-p", "--path", dest="train_path", help="Path to training data.")
parser.add_option("--network", dest="network", help="Base network to use. Supports vgg or resnet50.", default='resnet50')
parser.add_option("--num_epochs", type="int", dest="num_epochs", help="Number of epochs.", default=30)
parser.add_option("--elen", dest="epoch_length", help="set the epoch length. def=17824", default=17824)
parser.add_option("--opt", dest="optimizers", help="set the optimizer to use", default="Adam")
parser.add_option("--lr", dest="lr", help="learn rate", type=float, default=1e-3)
parser.add_option("--val", dest="validation_steps", help="Number of validation steps to perform in each epoch", type="int", default=2971)
parser.add_option("--config_filename", dest="config_filename", help="Location to store all the metadata related to the training (to be used when testing).", default="training_configs/rpn.pickle")
parser.add_option("--load", dest="load", help="What model to load", default=None)
parser.add_option("--translate", dest="translate", help="Augment with random translation by 200px in x and y direction in training. (Default=True).", action="store_true", default=True)
parser.add_option("--hf", dest="horizontal_flips", help="Augment with horizontal flips in training. (Default=true).", action="store_false", default=True)
parser.add_option("--vf", dest="vertical_flips", help="Augment with vertical flips in training. (Default=false).", action="store_true", default=True)
parser.add_option("--rot", "--rot_90", dest="rot_90", help="Augment with 90 degree rotations in training. (Default=false).", action="store_true", default=True)
(options, args) = parser.parse_args()
if not options.train_path: # if filename is not given
parser.error('Error: path to training data must be specified. Pass --path to command line')
# pass the settings from the command line, and persist them in the config object
C = config.Config()
C.translate = bool(options.translate)
C.use_horizontal_flips = bool(options.horizontal_flips)
C.use_vertical_flips = bool(options.vertical_flips)
C.rot_90 = bool(options.rot_90)
# we will use resnet. may change to others
if options.network == 'vgg' or options.network == 'vgg16':
C.network = 'vgg16'
from keras_frcnn import vgg as nn
elif options.network == 'resnet50':
from keras_frcnn import resnet as nn
C.network = 'resnet50'
elif options.network == 'vgg19':
from keras_frcnn import vgg19 as nn
C.network = 'vgg19'
elif options.network == 'mobilenetv1':
from keras_frcnn import mobilenetv1 as nn
C.network = 'mobilenetv1'
elif options.network == 'mobilenetv2':
from keras_frcnn import mobilenetv2 as nn
C.network = 'mobilenetv2'
elif options.network == 'densenet':
from keras_frcnn import densenet as nn
C.network = 'densenet'
else:
print('Not a valid model')
raise ValueError
# set the path to weights based on backend and model
C.base_net_weights = nn.get_weight_path()
all_imgs, classes_count, class_mapping = get_data(options.train_path)
if 'bg' not in classes_count:
classes_count['bg'] = 0
class_mapping['bg'] = len(class_mapping)
C.class_mapping = class_mapping
inv_map = {v: k for k, v in class_mapping.items()}
print('Training images per class:')
pprint.pprint(classes_count)
print('Num classes (including bg) = {}'.format(len(classes_count)))
config_output_filename = options.config_filename
with open(config_output_filename, 'wb') as config_f:
pickle.dump(C,config_f)
print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format(config_output_filename))
random.shuffle(all_imgs)
num_imgs = len(all_imgs)
train_imgs = [s for s in all_imgs if s['imageset'] == 'train']
val_imgs = [s for s in all_imgs if s['imageset'] == 'val']
print('Num train samples {}'.format(len(train_imgs)))
print('Num val samples {}'.format(len(val_imgs)))
data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, C, nn.get_img_output_length, K.common.image_dim_ordering(), mode='train', hist_equal=True)
data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, C, nn.get_img_output_length,K.common.image_dim_ordering(), mode='val', hist_equal=True)
if K.common.image_dim_ordering() == 'th':
input_shape_img = (3, 800, 800)
else:
input_shape_img = (800, 800, 3)
img_input = Input(shape=input_shape_img)
# define the RPN, built on the base layers
num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)
rpn = nn.rpn(nn.nn_base(img_input, trainable=True), num_anchors)
model_rpn = Model(img_input, rpn[:2])
# load pretrained weights
try:
if options.load is None:
print('loading weights from {}'.format(C.base_net_weights))
model_rpn.load_weights(C.base_net_weights, by_name=True)
except:
print('Could not load pretrained model weights. Weights can be found in the keras application folder https://github.com/fchollet/keras/tree/master/keras/applications')
# optimizer setup
if options.optimizers == "SGD":
optimizer = SGD(lr=options.lr/100, decay=0.0005, momentum=0.9)
else:
optimizer = Adam(lr=options.lr, clipnorm=0.001)
# may use this to resume from rpn models or previous training. specify either rpn or frcnn model to load
if options.load is not None:
print("loading previous model from ", options.load)
model_rpn.load_weights(options.load, by_name=True)
# compile the model AFTER loading weights!
model_rpn.compile(optimizer=optimizer, loss=[loss_func.rpn_loss_cls(num_anchors), loss_func.rpn_loss_regr(num_anchors)])
epoch_length = int(options.epoch_length)
num_epochs = int(options.num_epochs)
iter_num = 0
losses = np.zeros((epoch_length, 2))
start_time = time.time()
best_loss = np.Inf
class_mapping_inv = {v: k for k, v in class_mapping.items()}
print('Starting training')
with open('log/rpn/rpn_training.csv', 'w') as log:
log_writer = csv.writer(log, delimiter=';')
log_writer.writerow(['curr_loss', 'loss_rpn_cls', 'loss_rpn_regr', 'curr_val_loss', 'val_loss_rpn_cls', 'val_loss_rpn_regr'])
for epoch_num in range(num_epochs):
progbar = generic_utils.Progbar(epoch_length)
print('Epoch {}/{}'.format(epoch_num + 1, num_epochs))
while True:
X, Y, img_data = next(data_gen_train)
loss_rpn = model_rpn.train_on_batch(X, Y)
losses[iter_num, 0] = loss_rpn[1]
losses[iter_num, 1] = loss_rpn[2]
iter_num += 1
progbar.update(iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1]))])
if iter_num == epoch_length:
loss_rpn_cls = np.mean(losses[:, 0])
loss_rpn_regr = np.mean(losses[:, 1])
print('Starting validation...')
val_losses = np.zeros((options.validation_steps, 2))
for val_step in range(options.validation_steps):
X_val, Y_val, img_data = next(data_gen_val)
val_loss = model_rpn.test_on_batch(X_val, Y_val)
val_losses[val_step, 0] = val_loss[1]
val_losses[val_step, 1] = val_loss[2]
val_loss_cls = np.mean(val_losses[:, 0])
val_loss_regr = np.mean(val_losses[:, 1])
print('... Validation done.')
if C.verbose:
print(f'Loss RPN classifier: {loss_rpn_cls}')
print(f'Loss RPN regression: {loss_rpn_regr}')
print(f'Validation Loss RPN classifier: {val_loss_cls}')
print(f'Validation Loss RPN regression: {val_loss_regr}')
print(f'Elapsed time: {time.time() - start_time}')
curr_loss = loss_rpn_cls + loss_rpn_regr
curr_val_loss = val_loss_cls + val_loss_regr
iter_num = 0
start_time = time.time()
with open('log/rpn/rpn_training.csv', 'a') as log:
log_writer = csv.writer(log, delimiter=';')
log_writer.writerow([curr_loss, loss_rpn_cls, loss_rpn_regr, curr_val_loss, val_loss_cls, val_loss_regr])
if curr_loss < best_loss:
if C.verbose:
print('Total loss decreased from {} to {}, saving weights'.format(best_loss,curr_loss))
best_loss = curr_loss
model_rpn.save_weights(f'./models/rpn/rpn.{options.network}.weights.{epoch_num}-{round(curr_loss, 2)}-{round(curr_val_loss, 2)}.hdf5')
break
print('Training complete, exiting.')
session.close()