forked from fschmid56/EfficientAT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex_openmic.py
256 lines (218 loc) · 9.92 KB
/
ex_openmic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import wandb
import numpy as np
import os
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
import argparse
from sklearn import metrics
import torch.nn.functional as F
from datasets.openmic import get_test_set, get_training_set
from models.mn.model import get_model as get_mobilenet
from models.dymn.model import get_model as get_dymn
from models.preprocess import AugmentMelSTFT
from helpers.init import worker_init_fn
from helpers.utils import NAME_TO_WIDTH, exp_warmup_linear_down, mixup
def train(args):
# Train Models on OpenMic
# logging is done using wandb
wandb.init(
project="OpenMic",
notes="Fine-tune Models on OpenMic.",
tags=["OpenMic", "Instrument Recognition"],
config=args,
name=args.experiment_name
)
device = torch.device('cuda') if args.cuda and torch.cuda.is_available() else torch.device('cpu')
# model to preprocess waveform into mel spectrograms
mel = AugmentMelSTFT(n_mels=args.n_mels,
sr=args.resample_rate,
win_length=args.window_size,
hopsize=args.hop_size,
n_fft=args.n_fft,
freqm=args.freqm,
timem=args.timem,
fmin=args.fmin,
fmax=args.fmax,
fmin_aug_range=args.fmin_aug_range,
fmax_aug_range=args.fmax_aug_range
)
mel.to(device)
# load prediction model
model_name = args.model_name
pretrained_name = model_name if args.pretrained else None
width = NAME_TO_WIDTH(model_name) if model_name and args.pretrained else args.model_width
if model_name.startswith("dymn"):
model = get_dymn(width_mult=width, pretrained_name=pretrained_name,
pretrain_final_temp=args.pretrain_final_temp,
num_classes=20)
else:
model = get_mobilenet(width_mult=width, pretrained_name=pretrained_name,
head_type=args.head_type, se_dims=args.se_dims,
num_classes=20)
model.to(device)
# dataloader
dl = DataLoader(dataset=get_training_set(resample_rate=args.resample_rate,
roll=False if args.no_roll else True,
wavmix=False if args.no_wavmix else True,
gain_augment=args.gain_augment),
worker_init_fn=worker_init_fn,
num_workers=args.num_workers,
batch_size=args.batch_size,
shuffle=True)
# evaluation loader
valid_dl = DataLoader(dataset=get_test_set(resample_rate=args.resample_rate),
worker_init_fn=worker_init_fn,
num_workers=args.num_workers,
batch_size=args.batch_size)
# optimizer & scheduler
lr = args.lr
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# phases of lr schedule: exponential increase, constant lr, linear decrease, fine-tune
schedule_lambda = \
exp_warmup_linear_down(args.warm_up_len, args.ramp_down_len, args.ramp_down_start, args.last_lr_value)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, schedule_lambda)
name = None
mAP, ROC, val_loss = float('NaN'), float('NaN'), float('NaN')
for epoch in range(args.n_epochs):
mel.train()
model.train()
train_stats = dict(train_loss=list())
pbar = tqdm(dl)
pbar.set_description("Epoch {}/{}: mAP: {:.4f}, val_loss: {:.4f}"
.format(epoch + 1, args.n_epochs, mAP, val_loss))
for batch in pbar:
x, f, y = batch
bs = x.size(0)
x, y = x.to(device), y.to(device)
x = _mel_forward(x, mel)
y_mask = y[:, 20:]
y = y[:, :20] > 0.5
y = y.float()
if args.mixup_alpha:
rn_indices, lam = mixup(bs, args.mixup_alpha)
lam = lam.to(x.device)
x = x * lam.reshape(bs, 1, 1, 1) + \
x[rn_indices] * (1. - lam.reshape(bs, 1, 1, 1))
y_hat, _ = model(x)
y_mix = y * lam.reshape(bs, 1) + y[rn_indices] * (1. - lam.reshape(bs, 1))
samples_loss = F.binary_cross_entropy_with_logits(y_hat, y_mix, reduction="none")
samples_loss = y_mask.float() * samples_loss
else:
y_hat, _ = model(x)
samples_loss = F.binary_cross_entropy_with_logits(y_hat, y, reduction="none")
samples_loss = y_mask.float() * samples_loss
# loss
loss = samples_loss.mean()
# append training statistics
train_stats['train_loss'].append(loss.detach().cpu().numpy())
# Update Model
loss.backward()
optimizer.step()
optimizer.zero_grad()
# Update learning rate
scheduler.step()
# evaluate
mAP, ROC, val_loss = _test(model, mel, valid_dl, device)
# log train and validation statistics
wandb.log({"train_loss": np.mean(train_stats['train_loss']),
"learning_rate": scheduler.get_last_lr()[0],
"mAP": mAP,
"ROC": ROC,
"val_loss": val_loss
})
# remove previous model (we try to not flood your hard disk) and save latest model
if name is not None:
os.remove(os.path.join(wandb.run.dir, name))
name = f"mn{str(width).replace('.', '')}_openmic_epoch_{epoch}_mAP_{int(round(mAP*1000))}.pt"
torch.save(model.state_dict(), os.path.join(wandb.run.dir, name))
def _mel_forward(x, mel):
old_shape = x.size()
x = x.reshape(-1, old_shape[2])
x = mel(x)
x = x.reshape(old_shape[0], old_shape[1], x.shape[1], x.shape[2])
return x
def _test(model, mel, eval_loader, device):
model.eval()
mel.eval()
targets = []
targets_mask = []
outputs = []
losses = []
pbar = tqdm(eval_loader)
pbar.set_description("Validating")
for batch in pbar:
x, _, y = batch
x = x.to(device)
y = y.to(device)
y_mask = y[:, 20:]
y = y[:, :20] > 0.5
y = y.float()
with torch.no_grad():
x = _mel_forward(x, mel)
y_hat, _ = model(x)
samples_loss = F.binary_cross_entropy_with_logits(y_hat, y, reduction="none")
samples_loss = y_mask.float() * samples_loss
losses.append(samples_loss.mean().cpu().numpy())
targets.append(y.float().cpu().numpy())
targets_mask.append(y_mask.float().cpu().numpy())
outputs.append(torch.sigmoid(y_hat.float()).cpu().numpy())
targets = np.concatenate(targets)
targets_mask = np.concatenate(targets_mask)
outputs = np.concatenate(outputs)
losses = np.stack(losses)
try:
mAP = np.array([metrics.average_precision_score(
targets[:, i], outputs[:, i], sample_weight=targets_mask[:, i]) for i in range(targets.shape[1])])
except ValueError:
mAP = np.array([np.nan] * targets.shape[1])
try:
ROC = np.array([metrics.roc_auc_score(
targets[:, i], outputs[:, i], sample_weight=targets_mask[:, i]) for i in range(targets.shape[1])])
except ValueError:
ROC = np.array([np.nan] * targets.shape[1])
return mAP.mean(), ROC.mean(), losses.mean()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of parser. ')
# general
parser.add_argument('--experiment_name', type=str, default="OpenMic")
parser.add_argument('--train', action='store_true', default=False)
parser.add_argument('--cuda', action='store_true', default=False)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--num_workers', type=int, default=12)
# training
parser.add_argument('--pretrained', action='store_true', default=False)
parser.add_argument('--model_name', type=str, default="mn10_as")
parser.add_argument('--pretrain_final_temp', type=float, default=1.0) # for DyMN
parser.add_argument('--model_width', type=float, default=1.0)
parser.add_argument('--head_type', type=str, default="mlp")
parser.add_argument('--se_dims', type=str, default="c")
parser.add_argument('--n_epochs', type=int, default=80)
parser.add_argument('--mixup_alpha', type=float, default=0.3)
parser.add_argument('--no_roll', action='store_true', default=False)
parser.add_argument('--no_wavmix', action='store_true', default=False)
parser.add_argument('--gain_augment', type=int, default=12)
parser.add_argument('--weight_decay', type=int, default=0.0)
# lr schedule
parser.add_argument('--lr', type=float, default=1e-5)
parser.add_argument('--warm_up_len', type=int, default=10)
parser.add_argument('--ramp_down_start', type=int, default=10)
parser.add_argument('--ramp_down_len', type=int, default=65)
parser.add_argument('--last_lr_value', type=float, default=0.01)
# preprocessing
parser.add_argument('--resample_rate', type=int, default=32000)
parser.add_argument('--window_size', type=int, default=800)
parser.add_argument('--hop_size', type=int, default=320)
parser.add_argument('--n_fft', type=int, default=1024)
parser.add_argument('--n_mels', type=int, default=128)
parser.add_argument('--freqm', type=int, default=0)
parser.add_argument('--timem', type=int, default=0)
parser.add_argument('--fmin', type=int, default=0)
parser.add_argument('--fmax', type=int, default=None)
parser.add_argument('--fmin_aug_range', type=int, default=10)
parser.add_argument('--fmax_aug_range', type=int, default=2000)
args = parser.parse_args()
if args.train:
train(args)
else:
evaluate(args)