-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbot_guts.py
50 lines (43 loc) · 1.46 KB
/
chatbot_guts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import string
import nltk
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def read_in_corpus():
f=open('corpus\joker.txt','r',errors = 'ignore')
raw=f.read()
raw = raw.lower()
#Install words while we're here
nltk.download('punkt')
nltk.download('wordnet')
return raw
raw = read_in_corpus()
sent_tokens = nltk.sent_tokenize(raw)
word_tokens = nltk.word_tokenize(raw)
remove_punct_dict = dict((ord(punct), None) for punct in string.punctuation)
lemmer = WordNetLemmatizer()
def LemTokens(tokens):
return [lemmer.lemmatize(token) for token in tokens]
def LemNormalize(text):
return LemTokens(nltk.word_tokenize(text.lower().translate(remove_punct_dict)))
#Cosine similarity
def generate_response(user_input):
sent_tokens.append(user_input.lower())
TfidfVec = TfidfVectorizer(tokenizer=LemNormalize, stop_words='english')
tfidf = TfidfVec.fit_transform(sent_tokens)
vals = cosine_similarity(tfidf[-1], tfidf)
idx=vals.argsort()[0][-2]
flat = vals.flatten()
flat.sort()
req_tfidf = flat[-2]
if(req_tfidf==0):
return "Don't get it"
else:
return sent_tokens[idx]
if __name__ == '__main__':
while(True):
user_input = str(input())
response = generate_response(user_input)
print(response)