-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
50 lines (39 loc) · 2.08 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper
from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun
from langchain.agents import initialize_agent, AgentType
from langchain.callbacks import StreamlitCallbackHandler
import os
from dotenv import load_dotenv
## Arxiv and Wikipedia Tools
api_wrappper_wiki = WikipediaAPIWrapper(top_k_results=1,doc_content_chars_max=250)
wiki = WikipediaQueryRun(api_wrapper=api_wrappper_wiki)
api_wrapper_arxiv = ArxivAPIWrapper(top_k_results=1,doc_content_chars_max=250)
arxiv = ArxivQueryRun(api_wrapper=api_wrapper_arxiv)
print(arxiv.name)
search = DuckDuckGoSearchRun(name="Search")
st.title("🔎 LangChain - Chat with search")
"""
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
"""
## Sidebar for settings
st.sidebar.title("Settings")
api_key = st.sidebar.text_input("Enter your Groq API Key:", type="password")
if "messages" not in st.session_state:
st.session_state["messages"] = [
{"role":"assistant","content":"Hi, I'm a chatbot who can search the web. How can I help you?"}
]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if prompt:=st.chat_input(placeholder="What is Machine Learning?"):
st.session_state.messages.append({"role":"user","content":prompt})
st.chat_message("user").write(prompt)
llm = ChatGroq(groq_api_key=api_key,model_name="Llama3-8b-8192",streaming=True)
tools = [search,arxiv,wiki]
search_agent = initialize_agent(tools,llm,agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handling_parsing_errors=True)
with st.chat_message("assistant"):
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
response = search_agent.run(st.session_state.messages,callbacks=[st_cb])
st.session_state.messages.append({"role":"assistant","content":response})
st.write(response)