-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolo.py
207 lines (166 loc) · 7.79 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import sys
# sys.path.append("..")
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = "2"
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import time
from keras import backend as K
from keras.utils import multi_gpu_model
from keras.models import load_model, Model
from keras.layers import Input
# import tensorflow.compat.v1 as tf
# tf.disable_v2_behavior()
# from tensorflow.compat.v1.keras.backend import set_session
import tensorflow as tf
from keras import backend as K
from PIL import Image
from yolo_utils.yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo_utils.yolo3.utils import letterbox_image
from pre_processing import *
from post_processing import *
dir_path, file_path = os.path.realpath(__file__).rsplit("\\", 1)
print(dir_path, '-->', file_path)
sys.path.insert(1, dir_path)
mother_dir, _ = os.path.realpath(dir_path).rsplit("\\", 1)
sys.path.insert(1, mother_dir)
class YOLO(object):
_defaults = {
"iou": 0.43,
"score": 0.2,
"gpu_num": 1,
"gpu_memory": 0.4,
"model_path": os.path.join(dir_path, "yolo_utils\\models\\yolo_{}.h5"),
"classes_path": os.path.join(dir_path, 'yolo_utils\\config\\classes_{}.txt'),
"anchors_path": os.path.join(dir_path, 'yolo_utils\\config\\yolo_anchors.txt'),
"model_image_size": (416, 416),
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name `{}`".format(n)
def __init__(self, **kwargs):
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
print("\n\n\n[YOLO_v3] Initializing\n\n\n")
self.__dict__.update(self._defaults) # set up default values
self.__dict__.update(kwargs) # and update with user overrides
self.process = self.process.split('_')[0]
self.model_path = self.model_path.format(self.process)
self.classes_path = self.classes_path.format(self.process)
self.class_names = self._get_class()
self.anchors = self._get_anchors()
# Reset the graph in case we have to load a model many times
K.clear_session()
tf.reset_default_graph()
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = self.gpu_memory
self.sess = tf.Session(config=config, graph=tf.get_default_graph())
K.set_session(self.sess)
# tf.keras.backend.set_session(self.sess)
print("\n\n\n[YOLO_v3] Session is created\n\n\n")
self.boxes, self.scores, self.classes = self.generate()
print("\n\n\n[YOLO_v3] Initialized successfully\n\n\n")
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def generate(self):
# check if model is h5 file or not
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors==6 # default setting
try:
self.yolo_model = load_model(model_path, compile=False)
print("\n\n\n[YOLO_v3] Loaded model\n\n\n")
except Exception as e:
self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
print("\n\n\n[YOLO_v3] Loading weights ...\n\n\n")
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes+5), \
'Mismatch between model and given anchor and class sizes'
# temp model to extract features
# layer_name = 'leaky_re_lu_65'
# self.feature_maps = self.yolo_model.get_layer(layer_name).output
# self.feature = K.function([self.yolo_model.input], [self.feature_maps])
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
if self.gpu_num > 1:
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
boxes, scores, classes = yolo_eval(
self.yolo_model.output,
self.anchors,
len(self.class_names),
self.input_image_shape,
score_threshold=self.score,
iou_threshold=self.iou
)
return boxes, scores, classes
def locate(self, image):
"""
Input:
+ image: image need detecting
Output:
+ centers: a dictionary with
keys: buttons detected
values: centers of all buttons
+ confidences: a dictionary with
keys: buttons detected
values: confidence of all buttons
"""
# image = Image.open(image_path)
# resize image to 416,416 to make input for Yolov3-416
if self.model_image_size != (None, None):
assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
else:
new_image_size = (image.width - (image.width%32),
image.height - (image.height%32))
boxed_image = letterbox_image(image, new_image_size)
image_data = np.array(boxed_image, dtype='float32')
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
# take output from model
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: (image.size[1], image.size[0]),
# K.learning_phase(): 0
}
)
# apply nms into result, to this step, it take 0.7 seconds
idx = non_max_suppression(out_boxes, 0.55, out_scores)
out_boxes, out_scores, out_classes = out_boxes[idx], out_scores[idx], out_classes[idx]
out_boxes = np.round(out_boxes).astype(np.int64)
# take position of each label
bboxes = {}
confidences = {}
for box, score, cl in zip(out_boxes, out_scores, out_classes):
predicted_class = self.class_names[cl]
if predicted_class in bboxes.keys():
if score > confidences[predicted_class]:
bboxes[predicted_class] = box[:4]
confidences[predicted_class] = score
else:
bboxes[predicted_class] = box[:4] # top, left, bottom, right
confidences[predicted_class] = score
return bboxes, confidences
def close_session(self):
self.sess.close()