-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsession_CTPN.py
167 lines (121 loc) · 5.11 KB
/
session_CTPN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python
# coding: utf-8
import numpy as NP
import tensorflow as TF
import keras.backend as K
def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
"""
Freezes the state of a session into a pruned computation graph.
Creates a new computation graph where variable nodes are replaced by
constants taking their current value in the session. The new graph will be
pruned so subgraphs that are not necessary to compute the requested
outputs are removed.
@param
session:
The TensorFlow session to be frozen.
keep_var_names:
A list of variable names that should not be frozen,
or None to freeze all the variables in the graph.
output_names:
Names of the relevant graph outputs.
clear_devices:
Remove the device directives from the graph for better portability.
@return
The frozen graph definition.
"""
from tensorflow.python.framework.graph_util import convert_variables_to_constants as vars2consts
graph = session.graph
with graph.as_default():
freeze_var_names = list(set(v.op.name for v in TF.global_variables()).difference(keep_var_names or []))
output_names = output_names or []
output_names += [v.op.name for v in TF.global_variables()]
# Graph -> GraphDef ProtoBuf
input_graph_def = graph.as_graph_def()
if clear_devices:
for node in input_graph_def.node:
node.device = ""
frozen_graph = vars2consts(session, input_graph_def, output_names, freeze_var_names)
return frozen_graph
from ctpn import *
# ctpn = CTPN()
# for t in ctpn.sess.graph.get_operations():
# print(t.name)
# frozen_graph = freeze_session(ctpn.sess,
# output_names=['bbox_pred/Reshape_1', 'cls_pred/Reshape_1', 'cls_prob'])
# TF.train.write_graph(frozen_graph, "pb_models", "CTPN.pb", as_text=False)
# TF.train.write_graph(frozen_graph, "pb_models", "CTPN.pbtxt", as_text=True)
K.clear_session()
TF.reset_default_graph()
gFile = TF.gfile.FastGFile("./pb_models/CTPN.pb", 'rb')
graph_def = TF.GraphDef()
# Parses a serialized binary message into the current message.
graph_def.ParseFromString(gFile.read())
gFile.close()
sess = TF.Session()
sess.graph.as_default()
# Import a serialized TensorFlow `GraphDef` protocol buffer
# and place into the current default `Graph`.
TF.import_graph_def(graph_def)
from IPython.display import clear_output, Image, display, HTML
def strip_consts(graph_def, max_const_size=32):
"""Strip large constant values from graph_def."""
strip_def = TF.GraphDef()
for n0 in graph_def.node:
n = strip_def.node.add()
n.MergeFrom(n0)
if n.op == 'Const':
tensor = n.attr['value'].tensor
size = len(tensor.tensor_content)
if size > max_const_size:
tensor.tensor_content = bytes("<stripped %d bytes>"%size, encoding='utf-8')
return strip_def
def show_graph(graph_def, max_const_size=32):
"""Visualize TensorFlow graph."""
if hasattr(graph_def, 'as_graph_def'):
graph_def = graph_def.as_graph_def()
strip_def = strip_consts(graph_def, max_const_size=max_const_size)
code = """
<script>
function load() {{
document.getElementById("{id}").pbtxt = {data};
}}
</script>
<link rel="import" href="https://tensorboard.appspot.com/tf-graph-basic.build.html" onload=load()>
<div style="height:600px">
<tf-graph-basic id="{id}"></tf-graph-basic>
</div>
""".format(data=repr(str(strip_def)), id='graph'+str(NP.random.rand()))
iframe = """
<iframe seamless style="width:1200px;height:620px;border:0" srcdoc="{}"></iframe>
""".format(code.replace('"', '"'))
display(HTML(iframe))
# show_graph(TF.get_default_graph().as_graph_def())
# for t in sess.graph.get_operations():
# print(t.values())
input_tensor = sess.graph.get_tensor_by_name('import/input_image:0')
# size_tensor = sess.graph.get_tensor_by_name('import/input_im_info:0')
bbox_tensor = sess.graph.get_tensor_by_name('import/bbox_pred/Reshape_1:0')
class_tensor = sess.graph.get_tensor_by_name('import/cls_pred/Reshape_1:0')
score_tensor = sess.graph.get_tensor_by_name('import/cls_prob:0')
import cv2
from PIL import Image
image_path = "D:\\HARI\\__RL_Dev__\\__Main_UTL__\\Environments\\states\\full_process\\s_02.png"
image_original = Image.open(image_path)
image = NP.asarray(image_original)
H, W = image.shape[:2]
im = image[:,:,0:3]
img = resize_image(im)
nH, nW, c = img.shape[:3]
im_info = NP.array([nH, nW, c]).reshape([1, 3])
bbox_pred_val, cls_prob_val = sess.run(
[bbox_tensor, score_tensor],
feed_dict={
input_tensor: [img],
# input_im_info: im_info
}
)
# print("Bbox:\n", bbox_pred_val.shape)
# np.savetxt("pb_models\\ctpn_bbox_pb.txt", bbox_pred_val.flatten(), fmt='%1.2e')
# print("Prob:\n", cls_prob_val.shape)
# np.savetxt("pb_models\\ctpn_prob_pb.txt", cls_prob_val.flatten(), fmt='%1.2e')
# ctpn.locate(image_original)