-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpre_processing.py
58 lines (41 loc) · 1.38 KB
/
pre_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import sys
# sys.path.append('..')
import cv2
import numpy as np
def load_list(text_file):
if not os.path.isfile(text_file):
print("[LinkError] Can NOT find file", text_file)
return None
reader = open(text_file, 'r')
data = [t.replace('\n', '') for t in reader.readlines()]
reader.close()
return data
def load_dict(json_file):
if not os.path.isfile(json_file):
print("[LinkError] Can NOT find file", json_file)
return None
import json
reader = open(json_file, 'r')
data = json.loads(reader.read())
reader.close()
return data
def resize_image(im, max_side_len=2400):
h, w, _ = im.shape
resize_w = w
resize_h = h
# limit the max side
if max(resize_h, resize_w) > max_side_len:
ratio = float(max_side_len)/resize_h if resize_h>resize_w else float(max_side_len)/resize_w
else:
ratio = 1.
resize_h = int(resize_h*ratio)
resize_w = int(resize_w*ratio)
resize_h = resize_h if resize_h%32==0 else (resize_h//32-1)*32
resize_w = resize_w if resize_w%32==0 else (resize_w//32-1)*32
resize_h = max(32, resize_h)
resize_w = max(32, resize_w)
im = cv2.resize(im, (int(resize_w), int(resize_h)))
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
return im, (ratio_h, ratio_w)