-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_gnn_from_mlp.py
410 lines (351 loc) · 16.8 KB
/
train_gnn_from_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import argparse
import copy
import json
import os
from typing import Callable
from collections import deque
import time
from datetime import datetime
from pathlib import Path
import json
import pyaml
import torch
import numpy as np
import yaml
from stable_baselines3.common.utils import get_device, safe_mean
from stable_baselines3.ppo import MlpPolicy
from stable_baselines3.common.callbacks import EventCallback
from stable_baselines3.common import logger
from torch import nn
import pybullet_data
import pybullet_envs # register pybullet envs from bullet3
from NerveNet.graph_util.mujoco_parser_settings import ControllerOption, EmbeddingOption, RootRelationOption
from NerveNet.models import nerve_net_conv
from NerveNet.policies import register_policies
import NerveNet.gym_envs.pybullet.register_disability_envs
import gym
from stable_baselines3 import PPO, A2C
from stable_baselines3.common.callbacks import CheckpointCallback, CallbackList
from stable_baselines3.common.env_util import make_vec_env
from util import LoggingCallback
algorithms = dict(A2C=A2C, PPO=PPO)
activation_functions = dict(Tanh=nn.Tanh, ReLU=nn.ReLU)
controller_option = dict(shared=ControllerOption.SHARED,
seperate=ControllerOption.SEPERATE,
unified=ControllerOption.UNIFIED)
embedding_option = dict(shared=EmbeddingOption.SHARED,
unified=EmbeddingOption.UNIFIED)
root_option = dict(none=RootRelationOption.NONE,
body=RootRelationOption.BODY,
unified=RootRelationOption.ALL)
def train(args):
cuda_availability = torch.cuda.is_available()
print('\n*************************')
print('`CUDA` available: {}'.format(cuda_availability))
print('Device specified: {}'.format(args.device))
print('*************************\n')
# load the config of the trained model:
with open(args.pretrained_output / "train_arguments.yaml") as yaml_data:
pretrain_arguments = yaml.load(yaml_data,
Loader=yaml.FullLoader)
pretrained_model = algorithms[pretrain_arguments["alg"]].load(
args.pretrained_output / "".join(pretrain_arguments["model_name"].split(".")[:-1]), device='cpu')
# Prepare tensorboard logging
log_name = '{}_{}_{}'.format(
args.experiment_name, args.task_name, datetime.now().strftime('%d-%m_%H-%M-%S'))
run_dir = args.tensorboard_log + "/" + log_name
Path(run_dir).mkdir(parents=True, exist_ok=True)
callbacks = []
# callbacks.append(CheckpointCallback(
# save_freq=1000000, save_path=run_dir, name_prefix='rl_model'))
callbacks.append(LoggingCallback(logpath=run_dir))
train_args = copy.copy(args)
train_args.config = train_args.config.name
pyaml.dump(train_args.__dict__, open(
os.path.join(run_dir, 'train_arguments.yaml'), 'w'))
assert args.task_name == pretrain_arguments["task_name"], "Envs must match for transfer learning"
# Create the vectorized environment
n_envs = train_args.n_envs # Number of processes to use
env = make_vec_env(args.task_name, n_envs=n_envs)
# define network architecture
if "GnnPolicy" in args.policy and args.net_arch is not None:
for net_arch_part in args.net_arch.keys():
for i, (layer_class_name, layer_size) in enumerate(args.net_arch[net_arch_part]):
if hasattr(nn, layer_class_name):
args.net_arch[net_arch_part][i] = (
getattr(nn, layer_class_name), layer_size)
elif hasattr(nerve_net_conv, layer_class_name):
args.net_arch[net_arch_part][i] = (
getattr(nerve_net_conv, layer_class_name), layer_size)
else:
def get_class(x):
return globals()[x]
c = get_class(layer_size)
assert c is not None, f"Unkown layer class '{layer_class_name}'"
args.net_arch[net_arch_part][i] = (c, layer_size)
with open(os.path.join(run_dir, 'net_arch.txt'), 'w') as fp:
fp.write(str(args.net_arch))
# Create the model
alg_class = algorithms[args.alg]
policy_kwargs = dict()
if args.net_arch is not None:
policy_kwargs['net_arch'] = args.net_arch
if args.activation_fn is not None:
policy_kwargs["activation_fn"] = activation_functions[args.activation_fn]
# policy_kwargs['device'] = args.device if args.device is not None else get_device('auto')
if "GnnPolicy" in args.policy:
policy_kwargs["mlp_extractor_kwargs"] = {
"task_name": args.task_name,
'device': args.device,
'gnn_for_values': args.gnn_for_values,
'controller_option': controller_option[args.controller_option],
'embedding_option': embedding_option[args.embedding_option],
'root_option': root_option[args.root_option],
'drop_body_nodes': args.drop_body_nodes,
'use_sibling_relations': args.use_sibling_relations,
'xml_assets_path': args.xml_assets_path,
'policy_readout_mode': args.policy_readout_mode
}
alg_kwargs = args.__dict__.copy()
alg_kwargs.pop("config", None)
alg_kwargs.pop("task_name", None)
alg_kwargs.pop("policy", None)
alg_kwargs.pop("activation_fn", None)
alg_kwargs.pop("gnn_for_values", None)
alg_kwargs.pop("embedding_option", None)
alg_kwargs.pop("controller_option", None)
alg_kwargs.pop("root_option", None)
alg_kwargs.pop("xml_assets_path", None)
alg_kwargs.pop("alg", None)
alg_kwargs.pop("net_arch", None)
alg_kwargs.pop("experiment_name", None)
alg_kwargs.pop("job_dir", None)
alg_kwargs.pop("total_timesteps", None)
alg_kwargs.pop("model_name", None)
alg_kwargs.pop("n_envs", None)
alg_kwargs.pop("drop_body_nodes", None)
alg_kwargs.pop("use_sibling_relations", None)
alg_kwargs.pop("experiment_name_suffix", None)
alg_kwargs.pop("policy_readout_mode", None)
alg_kwargs.pop("pretrained_output", None)
model = alg_class(args.policy,
env,
verbose=1,
# n_steps=args.n_steps,
policy_kwargs=policy_kwargs,
# device=args.device,
# tensorboard_log=args.tensorboard_log,
# learning_rate=args.learning_rate,
# batch_size=args.batch_size,
# n_epochs=args.n_epochs,
**alg_kwargs)
# model.learn(total_timesteps=args.total_timesteps,
# callback=callbacks,
# tb_log_name=log_name)
# PPO Learn parameters:
total_timesteps = args.total_timesteps
callback = callbacks
log_interval = 1
eval_env = make_vec_env(args.task_name, n_envs=1)
eval_freq = 1e4
n_eval_episodes = 3
tb_log_name = log_name
eval_log_path = None
reset_num_timesteps = True
#################################
##### Custom Transfer Learn #####
#################################
iteration = 0
total_timesteps, callback = model._setup_learn(
total_timesteps, eval_env, callback, eval_freq, n_eval_episodes, eval_log_path, reset_num_timesteps, tb_log_name
)
### setup pretrained model ###
pretrained_model.num_timesteps = 0
pretrained_model._episode_num = 0
pretrained_model._total_timesteps = total_timesteps
pretrained_model.ep_info_buffer = deque(maxlen=100)
pretrained_model.ep_success_buffer = deque(maxlen=100)
pretrained_model._last_obs = model.env.reset()
pretrained_model._last_dones = np.zeros((model.env.num_envs,), dtype=bool)
callback.on_training_start(locals(), globals())
while pretrained_model.num_timesteps < total_timesteps:
continue_training = pretrained_model.collect_rollouts(model.env,
callback,
model.rollout_buffer,
n_rollout_steps=model.n_steps)
if continue_training is False:
break
iteration += 1
model._update_current_progress_remaining(
pretrained_model.num_timesteps, total_timesteps)
# Display training infos
if log_interval is not None and iteration % log_interval == 0:
fps = int(pretrained_model.num_timesteps /
(time.time() - model.start_time))
logger.record("time/iterations", iteration, exclude="tensorboard")
if len(model.ep_info_buffer) > 0 and len(model.ep_info_buffer[0]) > 0:
logger.record(
"rollout/ep_rew_mean", safe_mean([ep_info["r"] for ep_info in model.ep_info_buffer]))
logger.record(
"rollout/ep_len_mean", safe_mean([ep_info["l"] for ep_info in model.ep_info_buffer]))
logger.record("time/fps", fps)
logger.record("time/time_elapsed", int(time.time() -
model.start_time), exclude="tensorboard")
logger.record("time/total_timesteps",
pretrained_model.num_timesteps, exclude="tensorboard")
logger.dump(step=pretrained_model.num_timesteps)
model.train()
callback.on_training_end()
model.save(os.path.join(args.tensorboard_log +
"/" + log_name, args.model_name))
def dir_path(path):
if os.path.isdir(path):
return Path(path)
else:
raise argparse.ArgumentTypeError(
f"readable_dir:{path} is not a valid path")
def dir_path(path):
if os.path.isdir(path):
return Path(path)
else:
raise argparse.ArgumentTypeError(
f"readable_dir:{path} is not a valid path")
def parse_arguments():
p = argparse.ArgumentParser()
p.add_argument('--config', type=argparse.FileType(mode='r'),
default='configs/GNN_AntBulletEnv-v03.yaml')
p.add_argument('--task_name', help='The name of the environment to use')
p.add_argument('--xml_assets_path',
help="The path to the directory where the xml of the task's robot is defined",
type=Path,
default=Path(pybullet_data.getDataPath()) / "mjcf")
p.add_argument('--alg', help='The algorithm to be used for training',
choices=["A2C", "PPO"])
p.add_argument('--policy',
help='The type of model to use.',
choices=["GnnPolicy", "GnnPolicy_V0", "MlpPolicy"])
p.add_argument("--total_timesteps",
help="The total number of samples (env steps) to train on",
type=int,
default=1000000)
p.add_argument('--tensorboard_log',
help='the log location for tensorboard (if None, no logging)',
default="runs")
p.add_argument('--n_steps',
help='The number of steps to run for each environment per update',
type=int,
default=1024)
p.add_argument('--batch_size',
help='The number of steps to run for each environment per update',
type=int,
default=64)
p.add_argument('--n_epochs',
help="For PPO: Number of epochs when optimizing the surrogate loss.",
type=int,
default=10)
p.add_argument('--n_envs',
help="Number of environments to run in parallel to collect rollout. Each environment requires one CPU",
type=int,
default=2)
p.add_argument('--seed', help='Random seed',
type=int,
default=1)
p.add_argument('--device',
help='Device (cpu, cuda, ...) on which the code should be run.'
'Setting it to auto, the code will be run on the GPU if possible.',
default="auto")
p.add_argument('--net_arch',
help='The specification of the policy and value networks',
type=json.loads)
p.add_argument('--gnn_for_values',
type=bool,
help='whether or not to use the GNN for the value function',
default=False)
p.add_argument('--policy_readout_mode',
help='what type of readout net to use.',
choices=["action_per_controller", "pooled",
"pooled_by_group", "flattened"],
default='flattened')
p.add_argument('--activation_fn',
help='Activation function of the policy and value networks.',
choices=["Tanh", "ReLU"])
p.add_argument('--controller_option',
help='Controller Option for mujoco parser',
choices=["shared", "unified", "seperate"],
default='shared')
p.add_argument('--embedding_option',
help='Embedding Option for mujoco parser',
choices=["shared", "unified"],
default='shared')
p.add_argument('--root_option',
help='Root Option for mujoco parser',
choices=["none", "body", "all"],
default='none')
p.add_argument('--drop_body_nodes',
help='Whether or not to use body nodes or only the joints and root nodes. Option is passed to the mujoco parser',
type=bool,
default=False)
p.add_argument('--use_sibling_relations',
help='',
type=bool,
default=False)
p.add_argument('--learning_rate',
help='Learning rate value for the optimizers.',
type=float,
default=3.0e-4)
p.add_argument('--job_dir', help='GCS location to export models')
p.add_argument('--experiment_name',
help='name to append to the tensorboard logs directory',
default=None)
p.add_argument('--experiment_name_suffix',
help='name to append to the tensorboard logs directory',
default=None)
p.add_argument('--model_name',
help='The name of your saved model',
default='model.zip')
p.add_argument('--pretrained_output',
help="The directory where the pretrained output & configs were logged to",
type=dir_path,
default='runs/MLP_PPO_pi64_64_vf64_64_N2048_B64_lr2e-04_GNNValue_0_EmbOpt_shared_AntBulletEnv-v0_02-03_10-45-07')
args = p.parse_args()
if args.config:
data = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in data.items():
if isinstance(value, list) and arg_dict[key] is not None:
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
args.learning_rate = float(args.learning_rate)
if isinstance(args.xml_assets_path, str):
args.xml_assets_path = Path(args.xml_assets_path)
if args.experiment_name is None:
policy_abbrv = args.policy.split("Policy")[0].upper()
net_arch_desc = ""
if isinstance(args.net_arch, dict): # GNN net arch
for net_arch_part in args.net_arch.keys():
net_arch_desc += "_" + net_arch_part[:3]
for i, (layer_class_name, layer_size) in enumerate(args.net_arch[net_arch_part]):
if isinstance(layer_size, list):
layer_size = "".join([str(i) for i in layer_size])
net_arch_desc += f"_{layer_size}"
elif isinstance(args.net_arch, list):
for net_arch_info in args.net_arch:
if isinstance(net_arch_info, dict):
for net_arch_key in net_arch_info.keys():
net_arch_desc += "_" + net_arch_key + \
"_".join([str(i)
for i in net_arch_info[net_arch_key]])
else:
net_arch_desc += f"_{net_arch_info}"
args.experiment_name = f"{policy_abbrv}_{args.alg}{net_arch_desc}_N{args.n_steps}_B{args.batch_size}_"
args.experiment_name += f"lr{args.learning_rate:.0e}_"
# args.experiment_name += f"GNNValue_{args.gnn_for_values:0d}_EmbOpt_{args.embedding_option}_"
args.experiment_name += f"mode_{args.policy_readout_mode}_"
args.experiment_name += f"Epochs_{args.n_epochs}_Nenvs_{args.n_envs}"
if args.experiment_name_suffix is not None:
args.experiment_name += f"_{args.experiment_name_suffix}"
return args
if __name__ == '__main__':
train(parse_arguments())