-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtesting.py
43 lines (34 loc) · 1.27 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import tensorflow as tf
from tensorflow import keras
from tensorflow.data import Dataset as tfds
from gaussian_diffusion import GaussianDiffusion
from diffusion_model import DiffusionModel
from postproc_utils import PostProcess
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
tf.config.set_visible_devices(gpus, 'GPU')
battery_dataset = 'mix'
total_timesteps = 1000
p_uncond = 0.2
mdir = './trained_models/'
network = keras.models.load_model(mdir+f'{battery_dataset}_network')
ema_network = keras.models.load_model(mdir+f'{battery_dataset}_ema_network')
# Get an instance of the Gaussian Diffusion utilities
gdf_util = GaussianDiffusion(timesteps=total_timesteps)
# Get the model
model = DiffusionModel(
network=network,
ema_network=ema_network,
gdf_util=gdf_util,
timesteps=total_timesteps,
p_uncond=p_uncond,
)
train_ds = tfds.load(f'./data/{battery_dataset}_train_ds')
test_ds = tfds.load(f'./data/{battery_dataset}_test_ds')
post_process = PostProcess(test_ds, model)
refs, preds = post_process.pred(reps=1)
soh_rmse = post_process.eval_soh(refs, preds)
rul_rmse = post_process.eval_rul(refs, preds)
post_process.plot_sample(refs, preds)
print('RUL RMSE', rul_rmse, 'SOH RMSE', soh_rmse)