-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathwhen.hpp
485 lines (437 loc) · 16.1 KB
/
when.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*****************************************************************//**
* \file When.hpp
* \brief Kotlin's when statement port
*
* \author Peter
* \date September 2020
*********************************************************************/
#pragma once
#include <type_traits>
#include <utility>
#include <cstring> //for strcmp()
#include <utility>
#include <functional>
#include <memory>
#ifdef SugarPPNamespace
namespace SugarPP
{
#endif
/**
* @brief A dummy struct that defines all comparison operators, which return true conditionlessly
*/
struct Anything
{
template<typename T>
constexpr bool operator==(T const&) const
{
return true;
}
template<typename T>
constexpr bool operator!=(T const&) const
{
return true;
}
template<typename T>
constexpr bool operator>(T const&) const
{
return true;
}
template<typename T>
constexpr bool operator>=(T const&) const
{
return true;
}
template<typename T>
constexpr bool operator<(T const&) const
{
return true;
}
template<typename T>
constexpr bool operator<=(T const&) const
{
return true;
}
template<typename T>
friend constexpr bool operator==(const T&, Anything)
{
return true;
}
template<typename T>
friend constexpr bool operator!=(const T&, Anything)
{
return true;
}
template<typename T>
friend constexpr bool operator>(const T&, Anything)
{
return true;
}
template<typename T>
friend constexpr bool operator>=(const T&, Anything)
{
return true;
}
template<typename T>
friend constexpr bool operator<(const T&, Anything)
{
return true;
}
template<typename T>
friend constexpr bool operator<=(const T&, Anything)
{
return true;
}
};
constexpr inline Anything _; //The globally available wildcard object
/**
* @brief Type traits for determining whether two types can be compared with an equal operator
* @tparam lhsType Type of Left-hand-side
* @tparam rhsType Type of Right-hand-side
*/
template <typename lhsType, typename rhsType, typename = void>
struct comparable : std::false_type
{
};
template <typename lhsType, typename rhsType>
struct comparable<lhsType, rhsType, decltype((std::declval<lhsType>() == std::declval<rhsType>()), void())>
: std::true_type
{
};
/*Dummy structs representing logical relation used by [GroupedExpression]*/
class Operator {
public:
};
/**
* @brief A dummy struct for logic NOT
*/
template<typename Case>
class NOT : public Operator
{
Case caseExpr;
public:
NOT(Case&& expr) :caseExpr(std::move(expr)) {}
template<typename Expr, typename = std::enable_if_t<comparable<Expr, Case>::value>>
bool operator==(Expr&& expr) const
{
return expr != caseExpr;
}
};
template<typename Expr, typename NotType, typename = std::enable_if_t<comparable<Expr, NotType>::value>>
bool operator==(Expr&& expr, NOT<NotType> const& notCase)
{
return notCase == expr;
}
/**
* @brief A dummy struct for logic AND
*/
template<typename Case1, typename Case2>
class AND : public Operator
{
Case1 caseExpr1;
Case2 caseExpr2;
public:
AND(Case1&& expr1, Case2&& expr2) :caseExpr1(std::move(expr1)), caseExpr2(std::move(expr2)) {}
template<typename Expr, typename = std::enable_if_t<comparable<Expr, Case1>::value&& comparable<Expr, Case2>::value>>
bool operator==(Expr&& expr) const
{
return (caseExpr1 == expr) && (caseExpr2 == expr);
}
};
template<typename Expr, typename Case1, typename Case2, typename = std::enable_if_t<comparable<Expr, Case1>::value&& comparable<Expr, Case2>::value>>
bool operator==(Expr&& expr, AND<Case1, Case2> const& andCase)
{
return andCase == expr;
}
/**
* @brief A dummy struct for logic OR
*/
template<typename Case1, typename Case2>
struct OR
{
Case1 caseExpr1;
Case2 caseExpr2;
public:
OR(Case1&& expr1, Case2&& expr2) :caseExpr1(std::move(expr1)), caseExpr2(std::move(expr2)) {}
template<typename Expr, typename = std::enable_if_t<comparable<Expr, Case1>::value&& comparable<Expr, Case2>::value>>
bool operator==(Expr&& expr) const
{
return (caseExpr1 == expr) || (caseExpr2 == expr);
}
};
template<typename Expr, typename Case1, typename Case2, typename = std::enable_if_t<comparable<Expr, Case1>::value&& comparable<Expr, Case2>::value>>
bool operator==(Expr&& expr, OR<Case1, Case2> const& orCase)
{
return orCase == expr;
}
/**********************************************************************/
/**
* @brief A dummy struct for Else() cases
*/
struct Else
{
constexpr operator bool() const { return true; }
};
/**
* @brief Dummy struct for is<Type> query
* @tparam Type The original type, which will be stored after removing reference type
*/
template <typename Type>
struct is
{
using type = std::remove_reference_t<Type>;
template<typename Arg>
constexpr bool operator()(Arg&& arg) const
{
return
std::is_same_v<
std::conditional_t<
std::is_array_v<std::remove_reference_t<Arg>>,
std::decay_t<Arg>,
std::remove_reference_t<Arg>
>,
Type
>;
}
};
/**
* @brief Dummy struct for is_not<Type> query
* @tparam Type The original type, which will be stored after removing reference type
*/
template<typename Type>
struct is_not
{
using type = std::remove_reference_t<Type>;
template<typename Arg>
constexpr bool operator()(Arg&& arg) const
{
return
!std::is_same_v<
std::conditional_t<
std::is_array_v<std::remove_reference_t<Arg>>,
std::decay_t<Arg>,
std::remove_reference_t<Arg>
>,
Type
>;
}
};
template<typename Type>
struct is_actually
{
using type = std::add_const_t<std::remove_reference_t<Type>>;
template<typename Arg/*, typename = std::enable_if_t<!std::is_pointer_v<std::remove_reference_t<Arg>>>*/> //for reference
bool operator()(Arg const& arg) const
{
return (dynamic_cast<type*>(&arg) != nullptr);
}
template<typename Pointer, typename = std::enable_if_t<std::is_pointer_v<std::remove_reference_t<Pointer>>>> //for raw pointer
bool operator()(Pointer const& arg) const
{
return (dynamic_cast<type*>(arg) != nullptr);
}
template<typename UniquePtrType> //for std::unique_ptr
bool operator()(std::unique_ptr<UniquePtrType> const& ptr) const
{
return (*this)(ptr.get());
}
template<typename SharedPtrType>
bool operator()(std::shared_ptr<SharedPtrType> const& ptr) const
{
return (*this)(ptr.get());
}
};
namespace detail
{
template <bool convertToFunction, typename ExprType, typename ReturnType>
auto when_impl(ExprType&&, Else, ReturnType&& ReturnResult)
{
if constexpr (convertToFunction)
return std::function{ ReturnResult };
else
return ReturnResult;
}
//.............................................................................................................................................v Number of arguments must be odd
template <bool convertToFunction, typename ExprType, typename Case1Type, typename Return1Type, typename... Args, typename = std::enable_if_t<(3 + sizeof...(Args)) % 2 != 0>>
auto when_impl(ExprType&& expr, Case1Type&& case1, Return1Type&& return1, Args &&... args)
{
if constexpr(convertToFunction)
{
if constexpr (sizeof...(Args) == 0)//end condition
return std::function{ [] {} };
else
{
if constexpr (std::is_invocable_r_v<bool, Case1Type, ExprType>)
{
if(case1(std::forward<ExprType>(expr)))
return std::function{ return1 };
else
return when_impl<convertToFunction>(std::forward<ExprType>(expr), std::forward<Args>(args)...);
}
else if constexpr (std::is_same_v<std::remove_reference_t<Case1Type>, bool>)
{
if (case1)
return std::function{ return1 };
else
return when_impl<convertToFunction>(std::forward<ExprType>(expr), std::forward<Args>(args)...);
}
else if constexpr (comparable<ExprType, Case1Type>::value)
{
if (expr == case1)
return std::function{ return1 };
else
return when_impl<convertToFunction>(std::forward<ExprType>(expr), std::forward<Args>(args)...);
}
return when_impl<convertToFunction>(std::forward<ExprType>(expr), std::forward<Args>(args)...);
}
}
else
{
if constexpr (sizeof...(Args) == 0)//end condition
return std::remove_reference_t<Return1Type>{};
else
{
if constexpr (std::is_invocable_r_v<bool, Case1Type, ExprType>)
{
if (case1(std::forward<ExprType>(expr)))
return return1;
else
return when_impl<convertToFunction>(std::forward<ExprType>(expr), std::forward<Args>(args)...);
}
else if constexpr (std::is_same_v<std::remove_reference_t<Case1Type>, bool>)
{
if (case1)
return return1;
else
return when_impl<convertToFunction>(std::forward<ExprType>(expr), std::forward<Args>(args)...);
}
else if constexpr (comparable<ExprType, Case1Type>::value)
{
if (expr == case1)
return return1;
else
return when_impl<convertToFunction>(std::forward<ExprType>(expr), std::forward<Args>(args)...);
}
return when_impl<convertToFunction>(std::forward<ExprType>(expr), std::forward<Args>(args)...);
}
}
}
template <bool convertToFunction, typename Return1Type, typename... Args>
auto when_impl(const char* Expr, const char* Case1, Return1Type&& return1, Args&&... args)
{
if constexpr(convertToFunction)
{
if constexpr (sizeof...(Args) == 0)//end condition
return std::function{ [] {} };
else
{
if(strcmp(Expr, Case1))
return std::function{ return1 };
else
return when_impl<convertToFunction>(Expr, std::forward<Args>(args)...);
}
}
else
{
if constexpr (sizeof...(Args) == 0)//end condition
return std::remove_reference_t<Return1Type>{};
else
{
if (strcmp(Expr, Case1) == 0)
return return1;
else
return when_impl<convertToFunction>(Expr, std::forward<Args>(args)...);
}
}
}
/*Argument-less when_impl*/
template<bool convertToFunction, typename ReturnType>
auto when_impl(Else, ReturnType&& returnResult)
{
if constexpr (convertToFunction)
return std::function{ returnResult };
else
return returnResult;
}
template<bool convertToFunction, typename Return1Type, typename ...Args, typename = std::enable_if_t<(2 + sizeof...(Args)) % 2 == 0>>
auto when_impl(bool case1, Return1Type&& return1, Args&&...args)
{
if constexpr (convertToFunction)
{
if constexpr (sizeof...(Args) == 0) //end condition
return std::function{ [] {} };
if (case1)
return std::function{ return1 };
return when_impl<convertToFunction>(std::forward<Args>(args)...);
}
else
{
if constexpr (sizeof...(Args) == 0) //end condition
return std::remove_reference_t<Return1Type>{};
else
{
if (case1)
return return1;
return when_impl<convertToFunction>(std::forward<Args>(args)...);
}
}
}
}
//namespace detail
/**
* @brief Because lambdas are different types, so it tests if the return objects are different types to determine whether to return a std::function wrapping the lambdas
*/
template <size_t I, typename Tuple>
constexpr bool shouldConvert()
{
using tuple_type = Tuple;
//Reference to different length arrays should not be considered as different type in this case, thus don't convert to function
if constexpr (std::is_array_v<std::remove_reference_t<std::tuple_element_t<I, tuple_type>>>)
return false;
else
{
const bool current = std::is_same_v<
std::remove_reference_t<std::tuple_element_t<I, tuple_type>>,
std::remove_reference_t<std::tuple_element_t<I + 2, tuple_type>>
>;
if constexpr (I + 2 >= std::tuple_size_v<tuple_type> -1)
return !current;
else //forget this you get 3K errors
return (!current || shouldConvert<I + 2, Tuple>());
}
}
/**
* @brief primary recursive template
*/
template <typename ExprType, typename Case1Type, typename Return1Type, typename... Args, typename = std::enable_if_t<(3 + sizeof...(Args)) % 2 != 0>>
auto when(ExprType&& expr, Case1Type&& case1, Return1Type&& return1, Args&&... args)
{
return detail::when_impl
<
shouldConvert
<
2,
decltype(std::forward_as_tuple(expr, case1, return1, args...))
>()
>(std::forward<ExprType>(expr),
std::forward<Case1Type>(case1),
std::forward<Return1Type>(return1),
std::forward<Args>(args)...);
}
/**
* @brief primary recursive template for argument-less switches
*/
template<typename Return1Type, typename ...Args, typename = std::enable_if_t<(2 + sizeof...(Args)) % 2 == 0>>
auto when(bool case1, Return1Type&& return1, Args&&...args)
{
return detail::when_impl
<
shouldConvert
<
1,
decltype(std::forward_as_tuple(case1, return1, args...))
>()
>(case1, std::forward<Return1Type>(return1), std::forward<Args>(args)...);
}
#ifdef SugarPPNamespace
}
#endif