-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprogram.py
34 lines (32 loc) · 894 Bytes
/
program.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from data import *;
import gensim;
from heapq import heapify,heappush,heappop;
model = gensim.models.Word2Vec.load("my_model.model");
def get_result(s):
if s not in model.wv:
return "";
heap=[];
heapify(heap);
for em in emojis:
if em in model.wv and len(heap)<K:
heappush(heap,(model.wv.similarity(s,em), em) );
elif em in model.wv and model.wv.similarity(s,em)>heap[0][0]:
heappop(heap);
heappush(heap,(model.wv.similarity(s,em), em) );
# print(len(heap) );
heap.sort(reverse=True);
res="";
for tup in heap:
res+=tup[1]+' ';
return res;
def main():
while(True):
s=input('Enter word: ');
if s=='0':
break;
if s not in model.wv:
continue;
d=float(-10**2);
print(get_result(s) );
if __name__ == "__main__":
main()