-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathencode.py
500 lines (392 loc) · 16.5 KB
/
encode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
"""Encode knot mosaics as a SAT formula.
To run:
python3 encode.py <m> <n> <AMO_method>
where
m is the number of rows in the board,
n is the number of columns in the board, and
AMO_method is the "at most one" encoding method (optional; default
is pairwise).
This file has utility functions (e.g., tup2var) and encodes the
constraints (e.g., constraints for allowed tiles on the edges) to
encode a suitably connected knot.
Hannah Miller
https://HM0880.github.io/
September 2022
"""
import datetime
import sys
################################################################
class MakeBoard:
"""Board size m x n (rows x columns) and the number of tiles t."""
def __init__(self, m_input, n_input, t_input=11):
"""Initialize the `board' object. The SAT formula is included as
part of the board object.
For the square, unoriented version, there will always be
exactly t=11 tiles, which is the default value of t_input.
Per the PySAT documentation [1] and source code [2], we will write
the SAT formula as a list of lists where each list contains
integers.
[1] https://pysathq.github.io/docs/html/api/solvers.html#pysat.solvers.Solver.add_clause
[2] https://github.com/pysathq/pysat/blob/master/pysat/solvers.py#L967-L998
"""
self.m = int(m_input)
self.n = int(n_input)
self.t = int(t_input)
self.formula = []
def get_largest_variable(self):
"""Return the largest variable (by absolute value) in the formula."""
largest_var = 0 # initialize
# !WORK! 2022-09-28 -- see if PySAT supports a better way to
# get largest value and to add comments
for clause in self.formula:
for entry in clause:
if abs(entry) > largest_var:
largest_var = abs(entry)
return largest_var
def prepend_dimacs_file_header_info(self, AMO_method):
"""Prepend DIMACS file header info to the formula.
Call `prepend_dimacs_file_header_info' as the last step in the
`encode_basic_constraints_for_suitably_connected_knot' function.
"""
info = []
num_vars = self.get_largest_variable()
num_clauses = len(self.formula)
info.append(f"c Board dimensions (rows x columns), {self.m} x {self.n}")
info.append(f"c AT MOST ONE method, {AMO_method}")
info.append(f"c Formula written on {datetime.datetime.now()}")
info.append(f"p cnf {num_vars} {num_clauses}")
self.formula = info + self.formula # prepend info
def print_formula(self):
"""Print the formula (which is a list of lists of integers) line
by line as a string output. This is used for writing the formula
to its own text file.
"""
for line in self.formula:
if isinstance(line, list):
print(" ".join([str(_) for _ in line]))
else:
print(line) # print the header info as-is
################################################################
# Make a lookup list of each tile's allowed neighbors to have a
# suitably connected mosaic. Tiles 7, 8, 9, and 10 have the same
# allowed neighbors.
tiles = [
# left right above below tile number
[
[],
[],
[],
[],
],
[[2, 3, 5, 7, 8, 9, 10], [], [], [3, 4, 6, 7, 8, 9, 10]], # tile 1
[[], [1, 4, 5, 7, 8, 9, 10], [], [3, 4, 6, 7, 8, 9, 10]], # tile 2
[[], [1, 4, 5, 7, 8, 9, 10], [1, 2, 6, 7, 8, 9, 10], []], # tile 3
[[2, 3, 5, 7, 8, 9, 10], [], [1, 2, 6, 7, 8, 9, 10], []], # tile 4
[[2, 3, 5, 7, 8, 9, 10], [1, 4, 5, 7, 8, 9, 10], [], []], # tile 5
[[], [], [1, 2, 6, 7, 8, 9, 10], [3, 4, 6, 7, 8, 9, 10]], # tile 6
[
[2, 3, 5, 7, 8, 9, 10],
[1, 4, 5, 7, 8, 9, 10],
[1, 2, 6, 7, 8, 9, 10],
[3, 4, 6, 7, 8, 9, 10],
], # tile 7
[
[2, 3, 5, 7, 8, 9, 10],
[1, 4, 5, 7, 8, 9, 10],
[1, 2, 6, 7, 8, 9, 10],
[3, 4, 6, 7, 8, 9, 10],
], # tile 8
[
[2, 3, 5, 7, 8, 9, 10],
[1, 4, 5, 7, 8, 9, 10],
[1, 2, 6, 7, 8, 9, 10],
[3, 4, 6, 7, 8, 9, 10],
], # tile 9
[
[2, 3, 5, 7, 8, 9, 10],
[1, 4, 5, 7, 8, 9, 10],
[1, 2, 6, 7, 8, 9, 10],
[3, 4, 6, 7, 8, 9, 10],
], # tile 10
]
def get_neighbors(k, direction):
"""Given a tile k and a direction (left, right, above, or below)
as a string, get the neighbors of k.
"""
if direction == "left":
idx = 0
elif direction == "right":
idx = 1
elif direction == "above":
idx = 2
elif direction == "below":
idx = 3
else:
raise ValueError(f"direction `{direction}` not known")
return tiles[k][idx]
################################################################
# Code to convert between tuples and variables
def in_bounds(board, i, j):
"""Given the board and a board location (i,j), return True if the
location is within the m x n board bounds. This handles the
(literal) edge cases, which are most relevant for a tile's
neighbors.
"""
i_row = 0 <= i < board.m
j_col = 0 <= j < board.n
return i_row and j_col
def tup2var(board, i, j, k):
"""Given the board and an (i,j,k) tuple, return the variable v.
Given the board, a board location (i,j), and a tile k, if (i,j)
is within the board bounds, then return the SAT variable v, where
v = (t)(in + j) + k + 1. The `board` object has the values of t
and n (m is not needed). As the final step, add 1 to convert from
a 0-indexed input to a 1-indexed output.
The board position is 0-indexed; i.e., the upper left corner is the
position (i,j) = (0,0).
From the variable v, we can get i and j, so we can also easily get
(i ± 1, j ± 1) when needed.
"""
if in_bounds(board, i, j):
return board.t * (i * board.n + j) + k + 1
def var2tup(board, v):
"""Given the board and a variable v, return the (i,j,k) tuple.
As the first step, subtract 1 to convert from a 1-indexed input to a
0-indexed output. Also take the absolute value of v to handle
conversion cases from the SAT solution where v was set to False
(i.e., v is negative).
The board position is 0-indexed; i.e., the upper left corner is the
position (i,j) = (0,0).
"""
v = abs(v) - 1
k = v % board.t
w = (v - k) / board.t
j = w % board.n
i = (w - j) / board.n
return int(i), int(j), int(k)
################################################################
# Code for possible neighbors
def compute_neighbor_coordinate(board, v, direction):
"""Given the board, a variable v, and a direction (left, right,
above, or below), return the board coordinates (a,b) of a neighbor
tile in that direction.
"""
i, j, _ = var2tup(board, v)
if direction == "left":
a = i
b = j - 1
elif direction == "right":
a = i
b = j + 1
elif direction == "above":
a = i - 1
b = j
elif direction == "below":
a = i + 1
b = j
else:
raise ValueError(f"direction `{direction}` not known")
return a, b
def neighbors_in_one_direction(board, v, direction):
"""Given a variable v and a direction (left, right, above, or
below), print a single clause of the possible neighbors of tile k
(encoded by v) in that direction.
The first variable in the clause is a negated v (i.e., -1*v),
and the last entry is a clause-terminating `0`.
"""
_, _, k = var2tup(board, v)
a, b = compute_neighbor_coordinate(board, v, direction)
if in_bounds(board, a, b):
neighbors = [tup2var(board, a, b, ell) for ell in get_neighbors(k, direction)]
if len(neighbors) > 0:
board.formula.append([-1 * v] + neighbors + [0])
def all_neighbors(board, v):
"""Given a variable v, encode the allowed neighbors of tile k
(encoded by v). Print each direction on one line, which naturally
gives a formula in CNF.
"""
neighbors_in_one_direction(board, v, "left")
neighbors_in_one_direction(board, v, "right")
neighbors_in_one_direction(board, v, "above")
neighbors_in_one_direction(board, v, "below")
################################################################
# Manage corners and edges
def one_corner_tile(board, i, j, nonzero_tile):
"""Given a coordinate (i,j) of a corner and the non-zero tile
number that is allowed in that corner, return a clause of length 2
which encodes the empty tile and the non-zero tile at those (i,j)
coordinates. Recall that a clause ends in 0.
"""
empty = tup2var(board, i, j, 0) # empty tile (tile 0)
nonzero = tup2var(board, i, j, nonzero_tile) # nonzero tile
board.formula.append([empty, nonzero, 0]) # clause ending in 0
def one_edge_tile(board, i, j, a, b, c):
"""Given a coordinate (i,j) of an edge and three non-zero tiles
a, b, and c, encode the constraints for that tile.
"""
empty = tup2var(board, i, j, 0)
tile_a = tup2var(board, i, j, a)
tile_b = tup2var(board, i, j, b)
tile_c = tup2var(board, i, j, c)
board.formula.append([empty, tile_a, tile_b, tile_c, 0])
def tiles_and_allowed_corners(board):
"""Given the board, encode the tiles which are allowed in the
corners. There are only four clauses of length 2, so just do
this by hand.
"""
one_corner_tile(board, 0, 0, 2) # T2; upper left
one_corner_tile(board, 0, board.n - 1, 1) # T1; upper right
one_corner_tile(board, board.m - 1, 0, 3) # T3; lower left
one_corner_tile(board, board.m - 1, board.n - 1, 4) # T4; lower right
def tiles_and_allowed_edges(board, edge_name, a, b, c):
"""Given an edge name (left, right, top, or bottom) and three
non-zero tile numbers a, b, and c, encode the constraints for
that edge. Do not encode the corners; i.e., the index goes from
[1,max-1).
"""
if edge_name == "left":
j = 0 # ith row; 0th column
for i in range(1, board.m - 1):
one_edge_tile(board, i, j, a, b, c)
elif edge_name == "right":
j = board.n - 1 # ith row; (n-1)th column
for i in range(1, board.m - 1):
one_edge_tile(board, i, j, a, b, c)
elif edge_name == "top":
i = 0 # 0th row; jth column
for j in range(1, board.n - 1):
one_edge_tile(board, i, j, a, b, c)
elif edge_name == "bottom":
i = board.m - 1 # (m-1)th row; jth column
for j in range(1, board.n - 1):
one_edge_tile(board, i, j, a, b, c)
else:
raise ValueError(f"edge name `{edge_name}` not known")
################################################################
# Code for exactly one tile
# This section gives a `at_least_one' function for encoding the AT
# LEAST ONE tile constraing.
# This section also has functions for different methods of encoding
# the AT MOST ONE (AMO) constraint.
# Only one function is used in the formula function
# `encode_basic_constraints_for_suitably_connected_knot`; the default
# is the pairwise method.
def at_least_one(board, i, j):
"""Encode AT LEAST ONE TILE on the board at location (i,j). Do this
by OR'ing of all the literals, ending with a clause-terminating 0.
"""
if in_bounds(board, i, j):
board.formula.append([tup2var(board, i, j, k) for k in range(board.t)] + [0])
def pairwise_AMO(board, i, j):
"""Given the board and a single (i,j) location, encode the
``exactly one tile in this location'' constraint with the
folklore/naive/pairwise method.
Its complexity is O(n^2), where n is the number of possible
tiles at an (i,j) board location, so n=t=11. The pairwise
method is decided immediately.
"""
# The pairwise OR negations, ending with a clause-terminating 0
for k in range(board.t - 1):
for ell in range(k + 1, board.t, 1):
lit1 = -1 * tup2var(board, i, j, k)
lit2 = -1 * tup2var(board, i, j, ell)
board.formula.append([lit1, lit2, 0])
def sinz_sequential_unary_counter_AMO(board, i, j, av):
"""Given the board, a single (i,j) location, and an additional
variable av, encode the ``exactly one tile in this location''
constraint with the sequential unary counter method of Sinz [1].
Sinz uses k to mean ``that not more than k out of the n
variables x+1,...,x_n are allowed to be true.'' With Sinz's
notation, SEQ's complexity is O(nk) for the number of clauses
and O(nk) for the number of additional variables. SEQ is
decided by unit propagation.
For our knot mosaics, n is the number of possible tiles at an
(i,j) board location, so n=t=11. For the AT MOST ONE
contraint, k is 1. In our usage, Sinz's SEQ is O(n) for the
number of clauses and O(n) for the number of variables.
----
[1] Sinz, Carsten. Towards an optimal CNF encoding of Boolean
cardinality constraints. International conference on principles
and practice of constraint programming. 2005.
"""
# First clause; -x_1 OR s_1
x1 = tup2var(board, i, j, 0) # tile 0
s1 = av
board.formula.append([-1 * x1, s1, 0])
# Loop; there are three pairwise clauses per tile
av = av + 1 # increment
for tile in range(
1, board.t - 1
): # 0 < tile < t (i.e., start at Tile 1 and do not include Tile 10)
xi = tup2var(board, i, j, tile) # variable x_i
si = av # additional variable s_i
sh = av - 1 # additional variable s_{i-1}; use h for subscript
board.formula.append([-1 * xi, si, 0])
board.formula.append([-1 * sh, si, 0])
board.formula.append([-1 * xi, -1 * sh, 0])
av = av + 1 # increment
# Last clause; -x_n OR -s_{n-1}
xn = tup2var(
board, i, j, board.t - 1
) # last tile t (need to adjust 11 -> 10 for 0-indexing)
snminus1 = av - 1 # need to subtract 1 from the current additional variable av
board.formula.append([-1 * xn, -1 * snminus1, 0])
return av # already incremented for the next (i,j) location
################################################################
# Code to produce the entire formula
def encode_basic_constraints_for_suitably_connected_knot(board, AMO_method="pairwise"):
"""Given an m x n board, produce the entire formula (including a
DIMACS header) for a suitably connected knot. To encode additional
constraints, write and use another function.
Board height m (i.e., rows), board width n (i.e., columns; set
equal to m for a square board), and the number of tiles t
(always 11 for square tiles).
"""
# Encode the allowed corners.
tiles_and_allowed_corners(board)
# Encode the allowed edges.
tiles_and_allowed_edges(board, "left", 2, 3, 6)
tiles_and_allowed_edges(board, "right", 1, 4, 6)
tiles_and_allowed_edges(board, "top", 1, 2, 5)
tiles_and_allowed_edges(board, "bottom", 3, 4, 5)
# Encode the allowed neighbors for every variable v, i.e., every
# (i,j) position with every possible k-th tile. Start the range at
# 1 since the functions expect variables which are 1-indexed.
for v in range(1, board.m * board.n * board.t):
all_neighbors(board, v)
# Encode the AT LEAST ONE constraint for all (i,j) locations.
for i in range(board.m):
for j in range(board.n):
at_least_one(board, i, j)
# Encode the AT MOST ONE (AMO) constraint for all (i,j) locations.
# Also manage additional variables used by some of the AMO constraints.
av = board.m * board.n * board.t + 1 # additional variable av
for i in range(board.m):
for j in range(board.n):
if AMO_method == "pairwise":
pairwise_AMO(board, i, j)
elif AMO_method == "sinz_seq":
av = sinz_sequential_unary_counter_AMO(board, i, j, av)
else:
raise ValueError(f"AMO_method `{AMO_method}` not supported")
# Finally, prepend the DIMACS file header info to the formula.
board.prepend_dimacs_file_header_info(AMO_method)
return board.formula
################################################################
# Call from the command line
if __name__ == "__main__":
# Get command line arguments A
A = sys.argv
m = A[1]
n = A[2]
try:
AMO_method = A[3]
except:
AMO_method = "pairwise"
# Make the board and encode the formula
board_input = MakeBoard(m, n)
formula = encode_basic_constraints_for_suitably_connected_knot(
board_input, AMO_method
)
# Print the formula to STDOUT
board_input.print_formula()