-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_ppo.py
608 lines (532 loc) · 30.4 KB
/
run_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
import os
import time
import shutil
import collections
from typing import Any, NewType
import logging
import copy
import math
from tqdm import tqdm
import random
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SequentialSampler
from transformers import (
AutoTokenizer,
AutoConfig,
EvalPrediction,
default_data_collator,
HfArgumentParser
)
import wandb
from src.data_utils.ppo_data_utils import (
proc_dataset_ppo,
proc_dataset_qa,
prepare_inputs_for_qa,
prepare_gen_kwargs_for_generation,
prepare_gen_kwargs_for_mixer_generation,
)
from src.data_utils.convqa_data_utils import load_datasets, DataCollatorWithIgnoreComponents
from src.data_utils.qr_data_utils import DataCollators
from src.model.GPT2modeling import GPT2LMHeadModel, GPT2HeadWithValueModel
from src.model.RoBERTamodeling import RobertaForConversationalQuestionAnswering, RobertaForConversationalQuestionAnsweringWithClassHead
from src.modules.ppo_trainer import PPOTrainer
from src.modules.convqa_evaluator import Evaluator, ConvqaEvaluators
from src.modules.convqa_trainer import QuestionAnsweringTrainer
from src.utils.convqa_utils import postprocess_qa_predictions, postprocess_qa_predictions_with_cls
from src.utils.ppo_args import DataTrainingArguments, ModelArguments, PPOTrainingArguments
InputDataClass = NewType("InputDataClass", Any)
logger = logging.getLogger(__name__)
def post_processing_function(examples,
features,
predictions,
tokenizer,
output_dir=None,
stage="eval",
n_best_size=20,
max_answer_length=30,
eval_coqa=False,
):
# Post-processing: we match the start logits and end logits to answers in the original context.
postprocess_qa_predictions_func = postprocess_qa_predictions if eval_coqa else postprocess_qa_predictions_with_cls
predictions = postprocess_qa_predictions_func(
examples=examples,
features=features,
predictions=predictions,
tokenizer=tokenizer,
n_best_size=n_best_size,
max_answer_length=max_answer_length,
output_dir=output_dir,
prefix=stage,
eval_coqa=eval_coqa,
batch=True
)
# Format the result to the format the metric expects.
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]
if eval_coqa:
references = [{"id": ex["id"], "answers": ex["answers"], "domain": ex["domain"]} for ex in examples]
else:
references = [{"id": ex["id"], "answers": ex["answers"]} for ex in examples]
return EvalPrediction(predictions=formatted_predictions, label_ids=references)
def compute_f1(predictions):
pred_dict = {prediction["id"]: prediction["prediction_text"] for prediction in predictions.predictions}
gold_dict = {gold["id"]: gold["answers"]["text"][0] for gold in predictions.label_ids}
f1_scores = []
for id_, pred in pred_dict.items():
f1 = Evaluator.compute_f1(pred, gold_dict[id_])
f1_scores.append(f1)
return f1_scores
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def main(model_args, data_args, training_args):
# init wandb for logging everything
wandb.init(project="ConvQA", entity='convqa', name=training_args.exp)
torch.backends.cudnn.deterministic = True
# init seed
set_seed(0)
"""
Load QA Model
"""
is_coqa = True if 'coqa' in data_args.dataset_name else False
qa_config = AutoConfig.from_pretrained(
model_args.qa_model_name_or_path,
cache_dir=data_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
if is_coqa:
qa_model = RobertaForConversationalQuestionAnswering.from_pretrained(
model_args.qa_model_name_or_path,
from_tf=bool(".ckpt" in model_args.qa_model_name_or_path),
config=qa_config,
cache_dir=data_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
beta=model_args.beta,
rational=True,
)
else:
qa_model = RobertaForConversationalQuestionAnsweringWithClassHead.from_pretrained(
model_args.qa_model_name_or_path,
from_tf=bool(".ckpt" in model_args.qa_model_name_or_path),
config=qa_config,
cache_dir=data_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
qa_tokenizer = AutoTokenizer.from_pretrained(
model_args.qa_tokenizer_name,
use_fast=True if is_coqa else False,
model_max_len=data_args.max_seq_length
)
"""
Load PPO Model
"""
ppo_tokenizer = AutoTokenizer.from_pretrained(model_args.ppo_tokenizer_name)
config = AutoConfig.from_pretrained(model_args.ppo_model_name_or_path)
qr_model_type = "decoder_only" if "gpt2" in model_args.ppo_model_name_or_path else "seq2seq"
training_args.qr_model_type = qr_model_type
if "gpt2" in model_args.ppo_model_name_or_path:
config.adapter = model_args.adapter
config.lm = model_args.lm
config.neck = model_args.neck if model_args.adapter else None
# config.gradient_checkpointing = True
if training_args.do_train:
qr_model = GPT2HeadWithValueModel.from_pretrained(model_args.ppo_model_name_or_path, config=config)
qr_model.init_value()
qr_model_ref = GPT2LMHeadModel.from_pretrained(model_args.ppo_model_name_or_path, config=config)
else:
raise ValueError
# wandb.watch(qr_model, log='all')
# Set device
os.environ["TOKENIZERS_PARALLELISM"] = "false"
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
qa_model.to(device)
if training_args.do_train:
qr_model.to(device)
qr_model_ref.to(device)
for param in qa_model.parameters():
param.requires_grad = False
for param in qr_model_ref.parameters():
param.requires_grad = False
# Set up QA evaluator
evaluator = ConvqaEvaluators["coqa"if is_coqa else "quac"]()
def compute_metrics(p):
return evaluator.compute(p.predictions, p.label_ids)
# Post-processing function for QA Evaluation
def post_processing_function_eval(examples, features, predictions, tokenizer, split="validation", prefix=None, *args, **kwargs):
# Post-processing: we match the start logits and end logits to answers in the original context.
postprocess_qa_predictions_func = postprocess_qa_predictions if is_coqa else postprocess_qa_predictions_with_cls
predictions = postprocess_qa_predictions_func(
examples=examples,
features=features,
predictions=predictions,
tokenizer=tokenizer,
n_best_size=20,
max_answer_length=data_args.max_answer_length,
output_dir=os.path.join(training_args.output_dir, training_args.exp),
prefix=prefix,
is_world_process_zero=True,
eval_coqa=is_coqa,
)
# Format the result to the format the metric expects.
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]
if is_coqa:
references = [{"id": ex["id"], "answers": ex["answers"], "domain": ex["domain"]} for ex in datasets[split]]
else:
references = [{"id": ex["id"], "answers": ex["answers"]} for ex in datasets[split]]
return EvalPrediction(predictions=formatted_predictions, label_ids=references)
"""
Load Dataset
"""
datasets, _ = load_datasets(data_args, data_args.cache_dir)
train_dataset, validation_dataset, test_dataset = proc_dataset_ppo(training_args, data_args, datasets, ppo_tokenizer)
"""
Training & Validation
"""
if training_args.do_train:
print('== DO TRAINING ==')
# Process Training Data
example_id_to_index_train = {k: i for i, k in enumerate(train_dataset["id"])}
index_to_example_id_train = {i: k for i, k in enumerate(train_dataset["id"])}
train_dataset.set_format(output_all_columns=True)
features_per_example = collections.defaultdict(list)
for i, feature in enumerate(train_dataset):
example = {"history": feature["history"],
"context": feature["context"],
"answers": feature["answers"],
"domain": feature["domain"] if is_coqa else None,
}
features_per_example[feature["id"]].append(example)
# Process Validation Data
example_id_to_index_validation = {k: i for i, k in enumerate(validation_dataset["id"])}
index_to_example_id_validation = {i: k for i, k in enumerate(validation_dataset["id"])}
train_loader = DataLoader(
train_dataset,
batch_size=training_args.batch_size,
sampler=SequentialSampler(train_dataset),
collate_fn=DataCollators[qr_model_type](pad_token_id=ppo_tokenizer.pad_token_id, example_id_to_index=example_id_to_index_train),
)
num_update_steps_per_epoch = len(train_loader) // training_args.gradient_accumulation_steps
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
max_steps = math.ceil(training_args.epochs * num_update_steps_per_epoch)
training_args.num_training_steps = max_steps
# initialize mixer steps
if training_args.mixer_steps > 0:
xent_length = max(training_args.xent_init_length, 0)
print(f"The mixer training will be in the first {training_args.mixer_steps / len(train_loader) * training_args.grad_accum} epochs!")
else:
xent_length = 0
qr_loader = DataLoader(
validation_dataset,
batch_size=training_args.per_device_eval_batch_size,
sampler=SequentialSampler(validation_dataset),
collate_fn=DataCollators[qr_model_type](pad_token_id=ppo_tokenizer.pad_token_id, example_id_to_index=example_id_to_index_validation),
)
ppo_trainer = PPOTrainer(qr_model, qr_model_ref, training_args)
best_scores = {'eval_exact_match': 0, 'eval_f1': 0, 'epoch': -1}
save_paths = []
patience = 0
global_step = 0
for epoch in range(training_args.epochs):
print(f'=== TRAINING | epoch {epoch} ===')
for batch_id, batch in enumerate(tqdm(train_loader)):
print(f'=== batch_id | {batch_id} ===')
# torch.cuda.empty_cache()
torch.set_grad_enabled(False)
qr_model_ref.eval()
qr_model.eval()
qa_model.eval()
logs = dict()
game_data = dict()
timing = dict()
t0 = time.time()
#### get response from gpt2
bid = batch['id']
rewrites, originals = [], []
input_ids, attention_mask = batch["input_ids"], batch["attention_mask"]
token_type_ids = batch["token_type_ids"] if qr_model_type == "decoder_only" else None
ce_labels = batch["labels"][:,1:xent_length+1]
input_gen_len = input_ids.shape[1] if qr_model_type == "decoder_only" else 0
# Update length for cross_entropy in MIXER training
if training_args.mixer_steps > 0:
if ppo_trainer.is_update_step():
global_step += 1
if global_step >= training_args.mixer_steps:
xent_length = max(xent_length-training_args.mixer_update_length_step, training_args.xent_min_length)
global_step = 0
if xent_length > 0:
# use mixer training
gen_kwargs, mixer_input_ids, mixer_attention_mask = prepare_gen_kwargs_for_mixer_generation(batch, training_args, ppo_tokenizer, qr_model_type, device, xent_length)
# Replace -100 to valid index
mixer_input_ids[mixer_input_ids == -100] = ppo_tokenizer.pad_token_id
if 'decoder_input_ids' in gen_kwargs:
gen_kwargs['decoder_input_ids'][gen_kwargs['decoder_input_ids'] == -100] = ppo_tokenizer.pad_token_id
generated_sequences = qr_model.generate(
input_ids=mixer_input_ids.to(device),
attention_mask=mixer_attention_mask.to(device),
**gen_kwargs,
)
else:
gen_kwargs = prepare_gen_kwargs_for_generation(batch, training_args, ppo_tokenizer, qr_model_type, device)
if 'decoder_input_ids' in gen_kwargs:
gen_kwargs['decoder_input_ids'][gen_kwargs['decoder_input_ids'] == -100] = ppo_tokenizer.pad_token_id
generated_sequences = qr_model.generate(
input_ids=input_ids.to(device),
attention_mask=attention_mask.to(device),
**gen_kwargs,
)
for seq in generated_sequences:
rewrite = ppo_tokenizer.decode(seq[input_gen_len:], skip_special_tokens=True)
# rewrite = rewrite[:rewrite.find(ppo_tokenizer.eos_token)]
rewrites.append(rewrite)
# originals.append(ppo_tokenizer.decode(seq[:input_gen_len]))
rewrites_tensors = generated_sequences[:,input_gen_len:]
print(rewrites)
# No need to pad as it is already padded
# rewrites_tensors = pad_and_stack_tensors(rewrites_tensors, device, pad_token_id=ppo_tokenizer.pad_token_id)
game_data['response'] = rewrites
timing['time/get_response'] = time.time()-t0
#### tokenize text for qa
t = time.time()
qa_batch, qa_example = prepare_inputs_for_qa(rewrites, bid, features_per_example, index_to_example_id_train, qa_tokenizer, args=data_args, use_token_type_ids = "xlnet" in model_args.qa_model_name_or_path, use_classhead=isinstance(qa_model, RobertaForConversationalQuestionAnsweringWithClassHead), use_history_for_qa=training_args.use_history_for_qa, is_coqa=is_coqa)
timing['time/build_input_qa'] = time.time()-t
#### get F1 score as reward
t = time.time()
outputs = qa_model(input_ids=torch.LongTensor(qa_batch["input_ids"]).to(device),
attention_mask=torch.LongTensor(qa_batch["attention_mask"]).to(device),
p_mask=torch.LongTensor(qa_batch["p_mask"]).to(device),
return_dict=True)
if is_coqa:
predictions = (outputs.start_logits.detach().cpu().numpy(),
outputs.end_logits.detach().cpu().numpy(),
outputs.yes_logits.detach().cpu().numpy(),
outputs.no_logits.detach().cpu().numpy(),
outputs.unk_logits.detach().cpu().numpy())
else:
predictions = (outputs.start_logits.detach().cpu().numpy(),
outputs.end_logits.detach().cpu().numpy(),
None)
qa_batch_list = []
for i in range(len(qa_batch["input_ids"])):
qa_batch_item = {k: v[i] for k, v in qa_batch.items()}
qa_batch_list.append(qa_batch_item)
prediction = post_processing_function(qa_example, qa_batch_list, predictions, qa_tokenizer, eval_coqa=is_coqa)
f1_scores = compute_f1(prediction)
rewards = torch.FloatTensor(f1_scores)
print(f1_scores, rewards.mean().item())
rewards[rewards == 0] = -0.1
# print('rewards', rewards)
timing['time/get_qa_preds'] = time.time()-t
#### Run PPO training
t = time.time()
torch.set_grad_enabled(True)
qr_model.train()
# Calculate Left and Right Padding
num_right_pad = (generated_sequences == ppo_tokenizer.eos_token_id).sum(dim=-1)
ns = training_args.num_return_sequences
# Generate PPO attention mask
if qr_model_type == 'decoder_only':
gen_length = generated_sequences.shape[-1] - input_ids.shape[-1]
gen_attention_mask = torch.ones(generated_sequences.shape[0], gen_length, dtype=torch.long)
for i, rp in enumerate(num_right_pad):
if rp != 0:
gen_attention_mask[i,-rp:] = 0
attention_mask = torch.repeat_interleave(attention_mask, ns, dim=0)
ppo_attention_mask = torch.cat([attention_mask, gen_attention_mask], dim=-1)
# Generate PPO token type id
gen_token_type_ids = torch.ones(generated_sequences.shape[0], gen_length, dtype=torch.long)
token_type_ids = torch.repeat_interleave(token_type_ids, ns, dim=0)
ppo_token_type_ids = torch.cat([token_type_ids, gen_token_type_ids], dim=-1)
# Generate PPO Input
ppo_inputs = qr_model.prepare_inputs_for_generation(generated_sequences,
attention_mask=ppo_attention_mask, token_type_ids=ppo_token_type_ids)
ce_labels = torch.repeat_interleave(ce_labels, ns, dim=0)
stats = ppo_trainer.step(ppo_inputs['input_ids'].to(device), ppo_inputs['position_ids'].to(device),
ppo_inputs['attention_mask'].to(device), ppo_inputs['token_type_ids'].to(device),
gen_length, rewards.to(device), num_ce_tokens=ce_labels.shape[-1], ce_labels=ce_labels)
del generated_sequences, input_ids, input_gen_len, attention_mask, token_type_ids
del outputs, qa_batch, qa_example, predictions, prediction
del ppo_inputs, ppo_attention_mask, gen_token_type_ids, gen_length, num_right_pad
else:
gen_length = generated_sequences.shape[-1] - 1
ppo_inputs = torch.repeat_interleave(input_ids, ns, dim=0).to(device)
decoder_input_ids = generated_sequences.to(device)
decoder_attention_mask = (generated_sequences != ppo_tokenizer.eos_token_id).long().roll(1, dims=-1)
decoder_attention_mask[:,0] = 1 # Fill first attention mask to 1
ppo_attention_mask = torch.repeat_interleave(attention_mask, ns, dim=0).to(device)
# Generate PPO token type id
ppo_token_type_ids = None
ce_labels = torch.repeat_interleave(ce_labels, ns, dim=0)
stats = ppo_trainer.step(ppo_inputs, None, ppo_attention_mask, None, gen_length, rewards.to(device), decoder_input_ids, decoder_attention_mask, num_ce_tokens=ce_labels.shape[-1], ce_labels=ce_labels)
del generated_sequences, input_ids, input_gen_len, attention_mask, token_type_ids
del outputs, qa_batch, qa_example, predictions, prediction
del ppo_inputs, ppo_attention_mask, decoder_input_ids, decoder_attention_mask, gen_length, num_right_pad
timing['time/optimization'] = time.time()-t
#### Log everything
timing['time/epoch'] = time.time()-t0
table_rows = [list(r) for r in zip(game_data['response'], rewards.cpu().tolist())]
logs.update({'game_log':wandb.Table(
columns=['response', 'reward'],
rows=table_rows)})
logs.update(timing)
logs.update(stats)
logs['env/reward_mean'] = torch.mean(rewards).cpu().numpy()
logs['env/reward_std'] = torch.std(rewards).cpu().numpy()
logs['env/reward_dist'] = rewards.cpu().numpy()
wandb.log(logs)
del rewards, stats, logs
# epoch-wise validation on validation set
print(f'=== VALIDATION | epoch {epoch} ===')
rewrites = {}
for i, batch in enumerate(tqdm(qr_loader)):
input_ids, attention_mask = batch["input_ids"], batch["attention_mask"]
input_gen_len = input_ids.shape[1] if qr_model_type == "decoder_only" else 0
gen_kwargs = prepare_gen_kwargs_for_generation(batch, training_args, ppo_tokenizer, qr_model_type, device)
gen_kwargs["num_return_sequences"] = 1
generated_sequences = qr_model.generate(
input_ids=input_ids.to(device),
attention_mask=attention_mask.to(device),
**gen_kwargs,
)
for seq, ex_id in zip(generated_sequences, batch["id"]):
rewrite = ppo_tokenizer.decode(seq[input_gen_len:], skip_special_tokens=True)
# rewrite = rewrite[:rewrite.find(ppo_tokenizer.eos_token)]
rewrites[index_to_example_id_validation[ex_id.item()]] = rewrite
# now all the rewrites are stored in dict
# let's do QA loop
validation_dataset = proc_dataset_qa(data_args, datasets['validation'], qa_tokenizer, rewrites, use_token_type_ids = "xlnet" in model_args.qa_model_name_or_path, use_classhead=isinstance(qa_model, RobertaForConversationalQuestionAnsweringWithClassHead), use_history_for_qa=training_args.use_history_for_qa, is_coqa=is_coqa)
os.makedirs(f"{training_args.output_dir}/{training_args.exp}/", exist_ok=True)
qa_training_args = copy.deepcopy(training_args)
qa_training_args.report_to = ['tensorboard']
trainer = QuestionAnsweringTrainer(
model=qa_model,
args=qa_training_args,
train_dataset=None,
eval_dataset=validation_dataset,
eval_examples=datasets["validation"],
tokenizer=qa_tokenizer,
data_collator=default_data_collator if is_coqa else DataCollatorWithIgnoreComponents(),
post_process_function=post_processing_function_eval,
compute_metrics=compute_metrics
)
print("*** VALIDATION | Run Trainer.Evaluate ***")
results = trainer.evaluate()
print(f"EPOCH {epoch} F1:{results['eval_f1']} EM: {results['eval_exact_match']}")
print()
output_eval_file = os.path.join(training_args.output_dir, training_args.exp, "eval_results_"+str(epoch)+".txt")
if trainer.is_world_process_zero():
with open(output_eval_file, "w") as writer:
print("***** Validation results *****")
for key, value in sorted(results.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
# save models if it outperforms
if results["eval_exact_match"] + results["eval_f1"] > best_scores["eval_exact_match"] + best_scores["eval_f1"]:
patience = 0
best_scores["eval_exact_match"] = results["eval_exact_match"]
best_scores["eval_f1"] = results["eval_f1"]
best_scores["epoch"] = epoch
os.makedirs(f"{training_args.output_dir}/{training_args.exp}/epoch-{str(epoch)}", exist_ok=True)
save_path = os.path.join(training_args.output_dir, training_args.exp, 'epoch-'+str(epoch))
save_paths.append(save_path)
qr_model.save_pretrained(save_path)
ppo_tokenizer.save_pretrained(save_path)
if len(save_paths) > training_args.max_save_num:
shutil.rmtree(save_paths.pop(0))
else:
patience += 1
if patience >= training_args.patience:
print("out of patience!")
exit(1)
"""
Evaluation
"""
if training_args.do_eval:
print('== DO EVALUATION ==')
# if os.path.exists(os.path.join(training_args.output_dir, training_args.exp, "eval_results.txt")):
# exit(1)
# evaluation!
# In evaluation, first we get all the rewrites, and then we do all the QA (not batch-by-batch)
example_id_to_index_test = {k: i for i, k in enumerate(test_dataset["id"])}
index_to_example_id_test = {i: k for i, k in enumerate(test_dataset["id"])}
qr_loader = DataLoader(
test_dataset,
batch_size=training_args.per_device_eval_batch_size,
sampler=SequentialSampler(test_dataset),
collate_fn=DataCollators[qr_model_type](pad_token_id=ppo_tokenizer.pad_token_id, example_id_to_index=example_id_to_index_test),
)
rewrites = {}
if data_args.orig:
print('Bypass generation')
else:
for batch in tqdm(qr_loader, desc=f'QR Inference', total=len(qr_loader), ncols=100):
input_ids, attention_mask = batch["input_ids"], batch["attention_mask"]
input_gen_len = input_ids.shape[1] if qr_model_type == "decoder_only" else 0
if training_args.xent_min_length > 0:
gen_kwargs, mixer_input_ids, mixer_attention_mask = prepare_gen_kwargs_for_mixer_generation(batch, training_args, ppo_tokenizer, qr_model_type, device, training_args.xent_min_length)
# Replace -100 to valid index
mixer_input_ids[mixer_input_ids == -100] = ppo_tokenizer.pad_token_id
if 'decoder_input_ids' in gen_kwargs:
gen_kwargs['decoder_input_ids'][gen_kwargs['decoder_input_ids'] == -100] = ppo_tokenizer.pad_token_id
gen_kwargs["num_return_sequences"] = 1
generated_sequences = qr_model_ref.generate(
input_ids=mixer_input_ids.to(device),
attention_mask=mixer_attention_mask.to(device),
**gen_kwargs,
)
else:
gen_kwargs = prepare_gen_kwargs_for_generation(batch, training_args, ppo_tokenizer, qr_model_type, device)
if 'decoder_input_ids' in gen_kwargs:
gen_kwargs['decoder_input_ids'][gen_kwargs['decoder_input_ids'] == -100] = ppo_tokenizer.pad_token_id
gen_kwargs["num_return_sequences"] = 1
generated_sequences = qr_model_ref.generate(
input_ids=input_ids.to(device),
attention_mask=attention_mask.to(device),
**gen_kwargs,
# no_repeat_ngram_size=4,
# early_stopping=True
)
for seq, ex_id in zip(generated_sequences, batch["id"]):
rewrite = ppo_tokenizer.decode(seq[input_gen_len:], skip_special_tokens=True)
# rewrite = rewrite[:rewrite.find(ppo_tokenizer.eos_token)]
rewrites[index_to_example_id_test[ex_id.item()]] = rewrite
# now all the rewrites are stored in dict
# let's do QA loop
test_dataset = proc_dataset_qa(data_args, datasets['test'], qa_tokenizer, rewrites, use_token_type_ids = "xlnet" in model_args.qa_model_name_or_path, use_classhead=isinstance(qa_model, RobertaForConversationalQuestionAnsweringWithClassHead), use_history_for_qa=training_args.use_history_for_qa, is_coqa=is_coqa)
os.makedirs(f"{training_args.output_dir}/{training_args.exp}", exist_ok=True)
qa_training_args = copy.deepcopy(training_args)
qa_training_args.report_to = ['tensorboard']
trainer = QuestionAnsweringTrainer(
model=qa_model,
args=qa_training_args,
tokenizer=qa_tokenizer,
data_collator=default_data_collator if is_coqa else DataCollatorWithIgnoreComponents(),
post_process_function=post_processing_function_eval,
compute_metrics=compute_metrics,
)
print("*** TEST | Run Trainer.Predict ***")
test_output = trainer.predict(
test_dataset=test_dataset,
test_examples=datasets["test"],
metric_key_prefix="eval",
)
results = test_output.metrics
print(f"F1:{results['eval_f1']} EM: {results['eval_exact_match']}")
print()
output_eval_file = os.path.join(training_args.output_dir, training_args.exp, "eval_results.txt")
if trainer.is_world_process_zero():
with open(output_eval_file, "w") as writer:
print("***** Evaluation results *****")
for key, value in sorted(results.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
return results
if __name__ == '__main__':
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, PPOTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
main(model_args, data_args, training_args)