-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
157 lines (122 loc) · 5.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from transformers import TrainingArguments, Trainer
import datasets
from dataclasses import dataclass
from typing import Dict, List, Optional, Union
import numpy as np
import evaluate
@dataclass
class DataCollatorWhisperCTCEncoder:
processor: WhisperProcessor
padding: Union[bool, str] = True
max_length: Optional[int] = None
truncation: Optional[bool] = True
max_length_labels: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
pad_to_multiple_of_labels: Optional[int] = None
def __call__(self, features: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
batch_audio = []
batch_label = []
batch_size = len(features)
for batch_idx in range(batch_size):
batch_audio.append(features[batch_idx]['speech'])
batch_label.append(features[batch_idx]['label'])
data = list(zip(batch_audio, batch_label))
# random.shuffle(data)
batch_audio = [item[0] for item in data]
batch_label = [item[1] for item in data]
batch = self.processor.feature_extractor(
batch_audio,
truncation=self.truncation,
sampling_rate = 16000,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
batch_label_id = [self.processor.tokenizer(item, truncation=True, max_length=448)['input_ids'] for item in batch_label]
# convert to numpy array as required by Whisper tokenizer
label_features = [{"input_ids": np.asarray(item)} for item in batch_label_id]
# must be longest, since we don't want to lose any transcript word
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
batch["labels"] = labels
return batch
all_dataset = datasets.load_from_disk('/workspace/whisper/dataset_hf_vin100h')
splits = all_dataset.train_test_split(test_size=0.005, seed=101, shuffle=True)
train_dataset = splits['train']
eval_dataset = splits['test']
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
processor = WhisperProcessor.from_pretrained("openai/whisper-base", language="vi", task="transcribe")
processor.tokenizer.pad_token = processor.tokenizer.eos_token
processor.tokenizer.max_length = 448
processor.tokenizer.set_prefix_tokens(language="vi", task="transcribe")
model.config.forced_decoder_ids = processor.tokenizer.get_decoder_prompt_ids(
language="vi", task="transcribe"
)
model.config.suppress_tokens = []
model.generation_config.forced_decoder_ids = processor.tokenizer.get_decoder_prompt_ids(
language="vi", task="transcribe"
)
model.generation_config.suppress_tokens = []
repo_name = '/workspace/whisper'
checkpoint_name = "pretrain_base"
batch_size = 16
num_epochs = 10
# accumulation_steps = 4
eval_accumulation_steps=100
# total_steps = (total_samples / batch_size) * num_epochs
training_args = TrainingArguments(
output_dir=f'{repo_name}/{checkpoint_name}',
logging_dir=f'{repo_name}/{checkpoint_name}/log',
group_by_length=False,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
evaluation_strategy="steps",
save_strategy="steps",
num_train_epochs=num_epochs,
# gradient_accumulation_steps=accumulation_steps,
eval_accumulation_steps=eval_accumulation_steps, # avoid OOM CUDA: https://discuss.huggingface.co/t/cuda-out-of-memory-during-evaluation-but-training-is-fine/1783
metric_for_best_model='wer',
greater_is_better=False,
fp16=True, # CUDA only
gradient_checkpointing=True,
remove_unused_columns=False,
dataloader_num_workers=2,
save_steps=2000,
eval_steps=4000,
logging_steps=100,
learning_rate=5e-4, # https://github.com/vasistalodagala/whisper-finetune Suggest lr here
# weight_decay=0.005,
warmup_steps=2000,
save_total_limit=2,
ignore_data_skip=True,
label_names=["labels"],
)
data_collator = DataCollatorWhisperCTCEncoder(
processor=processor,
)
metric = evaluate.load("wer")
def compute_wer(eval_prediction):
pred_ids = eval_prediction.predictions[0] # shape (total eval sample, max_length, vocab size)
label_ids = eval_prediction.label_ids # shape (total eval sample, max_length)
pred_ids = np.argmax(pred_ids, axis=-1) # -> to (total eval sample, max_length)
label_ids[label_ids == -100] = processor.tokenizer.pad_token_id
pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True)
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
return {'wer': wer}
trainer = Trainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_wer,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=processor.feature_extractor,
)
# trainer.train(resume_from_checkpoint='path/to/checkpoint')
trainer.train()
trainer.save_state()
trainer.save_model()