|
1 |
| -//: Playground - noun: a place where people can play |
| 1 | +gcd(52, 39) // 13 |
| 2 | +gcd(228, 36) // 12 |
| 3 | +gcd(51357, 3819) // 57 |
| 4 | +gcd(841, 299) // 1 |
2 | 5 |
|
3 |
| -/* |
4 |
| - Iterative approach based on the Euclidean algorithm. |
5 |
| - The Euclidean algorithm is based on the principle that the greatest |
6 |
| - common divisor of two numbers does not change if the larger number |
7 |
| - is replaced by its difference with the smaller number. |
8 |
| - - Parameter m: First natural number |
9 |
| - - Parameter n: Second natural number |
10 |
| - - Returns: The natural gcd if m and n |
11 |
| - */ |
12 |
| -func gcdIterativeEuklid(_ m: Int, _ n: Int) -> Int { |
13 |
| - var a: Int = 0 |
14 |
| - var b: Int = max(m, n) |
15 |
| - var r: Int = min(m, n) |
16 |
| - |
17 |
| - while r != 0 { |
18 |
| - a = b |
19 |
| - b = r |
20 |
| - r = a % b |
21 |
| - } |
22 |
| - return b |
23 |
| -} |
24 |
| - |
25 |
| -/* |
26 |
| - Recursive approach based on the Euclidean algorithm. |
27 |
| - |
28 |
| - - Parameter m: First natural number |
29 |
| - - Parameter n: Second natural number |
30 |
| - - Returns: The natural gcd of m and n |
31 |
| - - Note: The recursive version makes only tail recursive calls. |
32 |
| - Most compilers for imperative languages do not optimize these. |
33 |
| - The swift compiler as well as the obj-c compiler is able to do |
34 |
| - optimizations for tail recursive calls, even though it still ends |
35 |
| - up to be the same in terms of complexity. That said, tail call |
36 |
| - elimination is not mutually exclusive to recursion. |
37 |
| - */ |
38 |
| -func gcdRecursiveEuklid(_ m: Int, _ n: Int) -> Int { |
39 |
| - let r: Int = m % n |
40 |
| - if r != 0 { |
41 |
| - return gcdRecursiveEuklid(n, r) |
42 |
| - } else { |
43 |
| - return n |
44 |
| - } |
45 |
| -} |
46 |
| - |
47 |
| -/* |
48 |
| - The binary GCD algorithm, also known as Stein's algorithm, |
49 |
| - is an algorithm that computes the greatest common divisor of two |
50 |
| - nonnegative integers. Stein's algorithm uses simpler arithmetic |
51 |
| - operations than the conventional Euclidean algorithm; it replaces |
52 |
| - division with arithmetic shifts, comparisons, and subtraction. |
53 |
| - |
54 |
| - - Parameter m: First natural number |
55 |
| - - Parameter n: Second natural number |
56 |
| - - Returns: The natural gcd of m and n |
57 |
| - - Complexity: worst case O(n^2), where n is the number of bits |
58 |
| - in the larger of the two numbers. Although each step reduces |
59 |
| - at least one of the operands by at least a factor of 2, |
60 |
| - the subtract and shift operations take linear time for very |
61 |
| - large integers |
62 |
| - */ |
63 |
| -func gcdBinaryRecursiveStein(_ m: Int, _ n: Int) -> Int { |
64 |
| - if let easySolution = findEasySolution(m, n) { return easySolution } |
65 |
| - |
66 |
| - if (m & 1) == 0 { |
67 |
| - // m is even |
68 |
| - if (n & 1) == 1 { |
69 |
| - // and n is odd |
70 |
| - return gcdBinaryRecursiveStein(m >> 1, n) |
71 |
| - } else { |
72 |
| - // both m and n are even |
73 |
| - return gcdBinaryRecursiveStein(m >> 1, n >> 1) << 1 |
74 |
| - } |
75 |
| - } else if (n & 1) == 0 { |
76 |
| - // m is odd, n is even |
77 |
| - return gcdBinaryRecursiveStein(m, n >> 1) |
78 |
| - } else if (m > n) { |
79 |
| - // reduce larger argument |
80 |
| - return gcdBinaryRecursiveStein((m - n) >> 1, n) |
81 |
| - } else { |
82 |
| - // reduce larger argument |
83 |
| - return gcdBinaryRecursiveStein((n - m) >> 1, m) |
84 |
| - } |
85 |
| -} |
86 |
| - |
87 |
| -/* |
88 |
| - Finds an easy solution for the gcd. |
89 |
| - - Note: It might be relevant for different usecases to |
90 |
| - try finding an easy solution for the GCD calculation |
91 |
| - before even starting more difficult operations. |
92 |
| - */ |
93 |
| -func findEasySolution(_ m: Int, _ n: Int) -> Int? { |
94 |
| - if m == n { |
95 |
| - return m |
96 |
| - } |
97 |
| - if m == 0 { |
98 |
| - return n |
99 |
| - } |
100 |
| - if n == 0 { |
101 |
| - return m |
102 |
| - } |
103 |
| - return nil |
104 |
| -} |
105 |
| - |
106 |
| - |
107 |
| -enum LCMError: Error { |
108 |
| - case divisionByZero |
109 |
| -} |
110 |
| - |
111 |
| -/* |
112 |
| - Calculates the lcm for two given numbers using a specified gcd algorithm. |
113 |
| - |
114 |
| - - Parameter m: First natural number. |
115 |
| - - Parameter n: Second natural number. |
116 |
| - - Parameter using: The used gcd algorithm to calculate the lcm. |
117 |
| - - Throws: Can throw a `divisionByZero` error if one of the given |
118 |
| - attributes turns out to be zero or less. |
119 |
| - - Returns: The least common multiplier of the two attributes as |
120 |
| - an unsigned integer |
121 |
| - */ |
122 |
| -func lcm(_ m: Int, _ n: Int, using gcdAlgorithm: (Int, Int) -> (Int)) throws -> Int { |
123 |
| - guard (m & n) != 0 else { throw LCMError.divisionByZero } |
124 |
| - return m / gcdAlgorithm(m, n) * n |
125 |
| -} |
126 |
| - |
127 |
| -gcdIterativeEuklid(52, 39) // 13 |
128 |
| -gcdIterativeEuklid(228, 36) // 12 |
129 |
| -gcdIterativeEuklid(51357, 3819) // 57 |
130 |
| -gcdIterativeEuklid(841, 299) // 1 |
131 |
| - |
132 |
| -gcdRecursiveEuklid(52, 39) // 13 |
133 |
| -gcdRecursiveEuklid(228, 36) // 12 |
134 |
| -gcdRecursiveEuklid(51357, 3819) // 57 |
135 |
| -gcdRecursiveEuklid(841, 299) // 1 |
| 6 | +gcd(52, 39, using: gcdRecursiveEuklid) // 13 |
| 7 | +gcd(228, 36, using: gcdRecursiveEuklid) // 12 |
| 8 | +gcd(51357, 3819, using: gcdRecursiveEuklid) // 57 |
| 9 | +gcd(841, 299, using: gcdRecursiveEuklid) // 1 |
136 | 10 |
|
137 |
| -gcdBinaryRecursiveStein(52, 39) // 13 |
138 |
| -gcdBinaryRecursiveStein(228, 36) // 12 |
139 |
| -gcdBinaryRecursiveStein(51357, 3819) // 57 |
140 |
| -gcdBinaryRecursiveStein(841, 299) // 1 |
| 11 | +gcd(52, 39, using: gcdBinaryRecursiveStein) // 13 |
| 12 | +gcd(228, 36, using: gcdBinaryRecursiveStein) // 12 |
| 13 | +gcd(51357, 3819, using: gcdBinaryRecursiveStein) // 57 |
| 14 | +gcd(841, 299, using: gcdBinaryRecursiveStein) // 1 |
141 | 15 |
|
142 | 16 | do {
|
143 |
| - try lcm(2, 3, using: gcdIterativeEuklid) // 6 |
144 |
| - try lcm(10, 8, using: gcdIterativeEuklid) // 40 |
| 17 | + try lcm(2, 3) // 6 |
| 18 | + try lcm(10, 8, using: gcdRecursiveEuklid) // 40 |
145 | 19 | } catch {
|
146 | 20 | dump(error)
|
147 | 21 | }
|
0 commit comments