Skip to content

Commit 611253f

Browse files
author
Simon C. Krüger
committed
GCD improvements after review
- Default parameter values - umbrella for different gcd implementations with generic gcd(_: _:) function - better structure of readme file including all 3 algorithms
1 parent 34a6067 commit 611253f

File tree

3 files changed

+151
-184
lines changed

3 files changed

+151
-184
lines changed

GCD/GCD.playground/Contents.swift

+14-140
Original file line numberDiff line numberDiff line change
@@ -1,147 +1,21 @@
1-
//: Playground - noun: a place where people can play
1+
gcd(52, 39) // 13
2+
gcd(228, 36) // 12
3+
gcd(51357, 3819) // 57
4+
gcd(841, 299) // 1
25

3-
/*
4-
Iterative approach based on the Euclidean algorithm.
5-
The Euclidean algorithm is based on the principle that the greatest
6-
common divisor of two numbers does not change if the larger number
7-
is replaced by its difference with the smaller number.
8-
- Parameter m: First natural number
9-
- Parameter n: Second natural number
10-
- Returns: The natural gcd if m and n
11-
*/
12-
func gcdIterativeEuklid(_ m: Int, _ n: Int) -> Int {
13-
var a: Int = 0
14-
var b: Int = max(m, n)
15-
var r: Int = min(m, n)
16-
17-
while r != 0 {
18-
a = b
19-
b = r
20-
r = a % b
21-
}
22-
return b
23-
}
24-
25-
/*
26-
Recursive approach based on the Euclidean algorithm.
27-
28-
- Parameter m: First natural number
29-
- Parameter n: Second natural number
30-
- Returns: The natural gcd of m and n
31-
- Note: The recursive version makes only tail recursive calls.
32-
Most compilers for imperative languages do not optimize these.
33-
The swift compiler as well as the obj-c compiler is able to do
34-
optimizations for tail recursive calls, even though it still ends
35-
up to be the same in terms of complexity. That said, tail call
36-
elimination is not mutually exclusive to recursion.
37-
*/
38-
func gcdRecursiveEuklid(_ m: Int, _ n: Int) -> Int {
39-
let r: Int = m % n
40-
if r != 0 {
41-
return gcdRecursiveEuklid(n, r)
42-
} else {
43-
return n
44-
}
45-
}
46-
47-
/*
48-
The binary GCD algorithm, also known as Stein's algorithm,
49-
is an algorithm that computes the greatest common divisor of two
50-
nonnegative integers. Stein's algorithm uses simpler arithmetic
51-
operations than the conventional Euclidean algorithm; it replaces
52-
division with arithmetic shifts, comparisons, and subtraction.
53-
54-
- Parameter m: First natural number
55-
- Parameter n: Second natural number
56-
- Returns: The natural gcd of m and n
57-
- Complexity: worst case O(n^2), where n is the number of bits
58-
in the larger of the two numbers. Although each step reduces
59-
at least one of the operands by at least a factor of 2,
60-
the subtract and shift operations take linear time for very
61-
large integers
62-
*/
63-
func gcdBinaryRecursiveStein(_ m: Int, _ n: Int) -> Int {
64-
if let easySolution = findEasySolution(m, n) { return easySolution }
65-
66-
if (m & 1) == 0 {
67-
// m is even
68-
if (n & 1) == 1 {
69-
// and n is odd
70-
return gcdBinaryRecursiveStein(m >> 1, n)
71-
} else {
72-
// both m and n are even
73-
return gcdBinaryRecursiveStein(m >> 1, n >> 1) << 1
74-
}
75-
} else if (n & 1) == 0 {
76-
// m is odd, n is even
77-
return gcdBinaryRecursiveStein(m, n >> 1)
78-
} else if (m > n) {
79-
// reduce larger argument
80-
return gcdBinaryRecursiveStein((m - n) >> 1, n)
81-
} else {
82-
// reduce larger argument
83-
return gcdBinaryRecursiveStein((n - m) >> 1, m)
84-
}
85-
}
86-
87-
/*
88-
Finds an easy solution for the gcd.
89-
- Note: It might be relevant for different usecases to
90-
try finding an easy solution for the GCD calculation
91-
before even starting more difficult operations.
92-
*/
93-
func findEasySolution(_ m: Int, _ n: Int) -> Int? {
94-
if m == n {
95-
return m
96-
}
97-
if m == 0 {
98-
return n
99-
}
100-
if n == 0 {
101-
return m
102-
}
103-
return nil
104-
}
105-
106-
107-
enum LCMError: Error {
108-
case divisionByZero
109-
}
110-
111-
/*
112-
Calculates the lcm for two given numbers using a specified gcd algorithm.
113-
114-
- Parameter m: First natural number.
115-
- Parameter n: Second natural number.
116-
- Parameter using: The used gcd algorithm to calculate the lcm.
117-
- Throws: Can throw a `divisionByZero` error if one of the given
118-
attributes turns out to be zero or less.
119-
- Returns: The least common multiplier of the two attributes as
120-
an unsigned integer
121-
*/
122-
func lcm(_ m: Int, _ n: Int, using gcdAlgorithm: (Int, Int) -> (Int)) throws -> Int {
123-
guard (m & n) != 0 else { throw LCMError.divisionByZero }
124-
return m / gcdAlgorithm(m, n) * n
125-
}
126-
127-
gcdIterativeEuklid(52, 39) // 13
128-
gcdIterativeEuklid(228, 36) // 12
129-
gcdIterativeEuklid(51357, 3819) // 57
130-
gcdIterativeEuklid(841, 299) // 1
131-
132-
gcdRecursiveEuklid(52, 39) // 13
133-
gcdRecursiveEuklid(228, 36) // 12
134-
gcdRecursiveEuklid(51357, 3819) // 57
135-
gcdRecursiveEuklid(841, 299) // 1
6+
gcd(52, 39, using: gcdRecursiveEuklid) // 13
7+
gcd(228, 36, using: gcdRecursiveEuklid) // 12
8+
gcd(51357, 3819, using: gcdRecursiveEuklid) // 57
9+
gcd(841, 299, using: gcdRecursiveEuklid) // 1
13610

137-
gcdBinaryRecursiveStein(52, 39) // 13
138-
gcdBinaryRecursiveStein(228, 36) // 12
139-
gcdBinaryRecursiveStein(51357, 3819) // 57
140-
gcdBinaryRecursiveStein(841, 299) // 1
11+
gcd(52, 39, using: gcdBinaryRecursiveStein) // 13
12+
gcd(228, 36, using: gcdBinaryRecursiveStein) // 12
13+
gcd(51357, 3819, using: gcdBinaryRecursiveStein) // 57
14+
gcd(841, 299, using: gcdBinaryRecursiveStein) // 1
14115

14216
do {
143-
try lcm(2, 3, using: gcdIterativeEuklid) // 6
144-
try lcm(10, 8, using: gcdIterativeEuklid) // 40
17+
try lcm(2, 3) // 6
18+
try lcm(10, 8, using: gcdRecursiveEuklid) // 40
14519
} catch {
14620
dump(error)
14721
}

GCD/GCD.swift GCD/GCD.playground/Sources/GCD.swift

+27-8
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,17 @@
1+
/*
2+
Finds the largest positive integer that divides both
3+
m and n without a remainder.
4+
5+
- Parameter m: First natural number
6+
- Parameter n: Second natural number
7+
- Parameter using: The used algorithm to calculate the gcd.
8+
If nothing provided, the Iterative Euclidean
9+
algorithm is used.
10+
- Returns: The natural gcd of m and n.
11+
*/
12+
public func gcd(_ m: Int, _ n: Int, using gcdAlgorithm: (Int, Int) -> (Int) = gcdIterativeEuklid) -> Int {
13+
return gcdAlgorithm(m, n)
14+
}
115

216
/*
317
Iterative approach based on the Euclidean algorithm.
@@ -6,9 +20,9 @@
620
is replaced by its difference with the smaller number.
721
- Parameter m: First natural number
822
- Parameter n: Second natural number
9-
- Returns: The natural gcd if m and n
23+
- Returns: The natural gcd of m and n.
1024
*/
11-
func gcdIterativeEuklid(_ m: Int, _ n: Int) -> Int {
25+
public func gcdIterativeEuklid(_ m: Int, _ n: Int) -> Int {
1226
var a: Int = 0
1327
var b: Int = max(m, n)
1428
var r: Int = min(m, n)
@@ -26,15 +40,15 @@ func gcdIterativeEuklid(_ m: Int, _ n: Int) -> Int {
2640

2741
- Parameter m: First natural number
2842
- Parameter n: Second natural number
29-
- Returns: The natural gcd of m and n
43+
- Returns: The natural gcd of m and n.
3044
- Note: The recursive version makes only tail recursive calls.
3145
Most compilers for imperative languages do not optimize these.
3246
The swift compiler as well as the obj-c compiler is able to do
3347
optimizations for tail recursive calls, even though it still ends
3448
up to be the same in terms of complexity. That said, tail call
3549
elimination is not mutually exclusive to recursion.
3650
*/
37-
func gcdRecursiveEuklid(_ m: Int, _ n: Int) -> Int {
51+
public func gcdRecursiveEuklid(_ m: Int, _ n: Int) -> Int {
3852
let r: Int = m % n
3953
if r != 0 {
4054
return gcdRecursiveEuklid(n, r)
@@ -59,7 +73,7 @@ func gcdRecursiveEuklid(_ m: Int, _ n: Int) -> Int {
5973
the subtract and shift operations take linear time for very
6074
large integers
6175
*/
62-
func gcdBinaryRecursiveStein(_ m: Int, _ n: Int) -> Int {
76+
public func gcdBinaryRecursiveStein(_ m: Int, _ n: Int) -> Int {
6377
if let easySolution = findEasySolution(m, n) { return easySolution }
6478

6579
if (m & 1) == 0 {
@@ -85,6 +99,9 @@ func gcdBinaryRecursiveStein(_ m: Int, _ n: Int) -> Int {
8599

86100
/*
87101
Finds an easy solution for the gcd.
102+
- Parameter m: First natural number
103+
- Parameter n: Second natural number
104+
- Returns: A natural gcd of m and n if possible.
88105
- Note: It might be relevant for different usecases to
89106
try finding an easy solution for the GCD calculation
90107
before even starting more difficult operations.
@@ -103,7 +120,7 @@ func findEasySolution(_ m: Int, _ n: Int) -> Int? {
103120
}
104121

105122

106-
enum LCMError: Error {
123+
public enum LCMError: Error {
107124
case divisionByZero
108125
}
109126

@@ -113,12 +130,14 @@ enum LCMError: Error {
113130
- Parameter m: First natural number.
114131
- Parameter n: Second natural number.
115132
- Parameter using: The used gcd algorithm to calculate the lcm.
133+
If nothing provided, the Iterative Euclidean
134+
algorithm is used.
116135
- Throws: Can throw a `divisionByZero` error if one of the given
117136
attributes turns out to be zero or less.
118137
- Returns: The least common multiplier of the two attributes as
119138
an unsigned integer
120139
*/
121-
func lcm(_ m: Int, _ n: Int, using gcdAlgorithm: (Int, Int) -> (Int)) throws -> Int {
122-
guard (m & n) != 0 else { throw LCMError.divisionByZero }
140+
public func lcm(_ m: Int, _ n: Int, using gcdAlgorithm: (Int, Int) -> (Int) = gcdIterativeEuklid) throws -> Int {
141+
guard m & n != 0 else { throw LCMError.divisionByZero }
123142
return m / gcdAlgorithm(m, n) * n
124143
}

0 commit comments

Comments
 (0)