-
Notifications
You must be signed in to change notification settings - Fork 410
/
Copy pathsearch.py
580 lines (475 loc) · 19.8 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
# -*- coding: utf-8 -*-
# Copyright 2021 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License")
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import datetime
import logging
import re
from typing import Any, Optional, Self, Union
from google.cloud.ndb import Key
from google.cloud.ndb.tasklets import Future # for type checking only
from framework import rediscache
from framework import users
from internals import (
approval_defs,
core_enums,
feature_helpers,
fetchchannels,
notifier,
search_fulltext,
search_queries,
)
from internals.core_models import FeatureEntry
from internals.review_models import (Gate, Vote)
MAX_TERMS = 6
DEFAULT_RESULTS_PER_PAGE = 100
MAX_RESULTS_PER_PAGE = 1000
SEARCH_CACHE_TTL = 60 * 60 # One hour
def process_exclude_deleted_unlisted_query() -> Future:
"""Return a future for all features, minus deleted and unlisted."""
query = FeatureEntry.query(
FeatureEntry.deleted == False,
FeatureEntry.unlisted == False)
future_feature_ids = query.fetch_async(keys_only=True)
return future_feature_ids
def process_exclude_deleted_unlisted_enterprise_query() -> Future:
"""Return a future for all features, minus deleted, unlisted, enterprise."""
query = FeatureEntry.query(
FeatureEntry.deleted == False,
FeatureEntry.unlisted == False,
FeatureEntry.feature_type <= core_enums.FEATURE_TYPE_DEPRECATION_ID)
future_feature_ids = query.fetch_async(keys_only=True)
return future_feature_ids
def process_pending_approval_me_query() -> list[int] | Future:
"""Return a list of features needing approval by current user."""
user = users.get_current_user()
if not user:
return []
approvable_gate_types = approval_defs.fields_approvable_by(user)
if not approvable_gate_types:
logging.info('User has no approvable_gate_types')
return []
query = Gate.query(
Gate.state.IN(Gate.PENDING_STATES),
Gate.gate_type.IN(approvable_gate_types))
future_feature_ids = query.fetch_async(projection=['feature_id'])
return future_feature_ids
def process_starred_me_query() -> list[int]:
"""Return a list of features starred by the current user."""
user = users.get_current_user()
if not user:
return []
feature_ids = notifier.FeatureStar.get_user_stars(user.email())
return feature_ids
def process_recent_reviews_query() -> list[int] | Future:
"""Return features that were reviewed recently."""
query = Vote.query(Vote.state.IN(Gate.FINAL_STATES))
query = query.filter(
Vote.set_on > (datetime.datetime.now() - datetime.timedelta(days=90)))
future_feature_ids = query.fetch_async(projection=['feature_id'])
return future_feature_ids
@dataclasses.dataclass
class QueryContext:
now: datetime.datetime
current_stable_milestone: int
@classmethod
def current(cls) -> Self:
"""Computes the "current" QueryContext based on ambient information."""
current_stable = None
for version in fetchchannels.get_omaha_data()[0]['versions']:
if version['channel'] == 'stable':
current_stable = int(version['version'].split('.')[0])
break
assert current_stable is not None
return cls(now=datetime.datetime.now(), current_stable_milestone=current_stable)
NOW_RELATIVE_DATE = re.compile(r'now(?:(?P<offset>[+-]\d+)(?P<unit>[dw]))?')
MILESTONE_RELATIVE_TO_STABLE = re.compile(r'current_stable(?P<offset>[+-]\d+)?')
def parse_query_value(val_str: str, context: QueryContext) -> search_queries.QueryValue:
"""Return a python object that can be used as a value in an NDB query."""
if val_str.startswith('"') and val_str.endswith('"'):
val_str = val_str[1:-1]
if val_str == 'true':
return True
if val_str == 'false':
return False
now_relative_date = NOW_RELATIVE_DATE.fullmatch(val_str)
if now_relative_date:
try:
unit = now_relative_date.group('unit')
if unit is None:
# Value was just a literal "now".
return context.now
offset = int(now_relative_date.group('offset'))
if unit == 'd':
return context.now + datetime.timedelta(days=offset)
if unit == 'w':
return context.now + datetime.timedelta(weeks=offset)
except OverflowError:
pass
# Otherwise, treat the value as a literal string.
try:
return datetime.datetime.strptime(val_str, '%Y-%m-%d')
except ValueError:
logging.info('%r is not a date' % val_str)
pass
milestone_relative_to_stable = MILESTONE_RELATIVE_TO_STABLE.fullmatch(val_str)
if milestone_relative_to_stable:
result = context.current_stable_milestone
offset_str = milestone_relative_to_stable.group('offset')
if offset_str:
result += int(offset_str)
return result
try:
return int(val_str)
except ValueError:
pass
return val_str
def parse_query_value_interval(
val_str: str, context: QueryContext
) -> search_queries.QueryValue | search_queries.Interval[search_queries.QueryValue]:
"""Return a value or interval of values that can be used in an NDB query."""
try_interval = val_str.split('..')
if len(try_interval) == 2:
return search_queries.Interval(
parse_query_value(try_interval[0], context),
parse_query_value(try_interval[1], context),
)
return parse_query_value(val_str, context)
def parse_query_value_list(
vals_str: str, context: QueryContext
) -> list[
search_queries.QueryValue | search_queries.Interval[search_queries.QueryValue]
]:
"""Return a list of values that can be used in an NDB query."""
return [parse_query_value_interval(part, context) for part in vals_str.split(',')]
# A full-text query term consisting of a single word or quoted string.
# The single word case cannot contain an operator.
# We do not support any kind of escaped quotes in quoted strings.
TEXT_PATTERN = r'[^":=><! ]+|"[^"]+"'
# The JSON field name of a feature field.
FIELD_NAME_PATTERN = r'[-.a-z_0-9]+'
# Comparison operators.
OPERATORS_PATTERN = r':|=|<=|<|>=|>|!='
# A value that a feature field can be compared against. It can be
# a single word or a quoted string.
VALUE_PATTERN = r'(?:[^", .]|\.[^", .])+|"[^"]+"'
VALUES_PATTERN = (
rf'(?:{VALUE_PATTERN})(?:\.\.(?:{VALUE_PATTERN})|(?:,(?:{VALUE_PATTERN}))*)'
)
# Logical operators.
LOGICAL_OPERATORS_PATTERN = r'OR\s+|-'
# Overall, a query term can be either a structured term or a full-text term.
# Structured terms look like: FIELD OPERATOR VALUE.
# Full-text terms look like: SINGLE_WORD, or like: "QUOTED STRING".
TERM_RE = re.compile(
r'(?P<logical>%s)?(?:(?P<field>%s)(?P<op>%s)(?P<val>%s)|(?P<textterm>%s))\s+' % (
LOGICAL_OPERATORS_PATTERN, FIELD_NAME_PATTERN, OPERATORS_PATTERN,
VALUES_PATTERN, TEXT_PATTERN),
re.I)
SIMPLE_QUERY_TERMS = [
'deleted_unlisted=false', 'deleted_unlisted_enterprise=false',
'pending-approval-by:me', 'starred-by:me',
'is:recently-reviewed', 'owner:me', 'editor:me', 'can_edit:me', 'cc:me']
def process_query_term(
is_negation: bool, field_name: str, op_str: str, vals_str: str, context: QueryContext
) -> Future:
"""Parse and run a user-supplied query, if we can handle it."""
val_list = parse_query_value_list(vals_str, context)
# Use exact match rather than word match on non-string fields.
if op_str == ':':
if (core_enums.is_enum_field(field_name.lower()) or
val_list and not isinstance(val_list[0], str)):
op_str = '='
if is_negation:
op_str = search_queries.negate_operator(op_str)
logging.info('trying %r %r %r', field_name, op_str, val_list)
future = search_queries.single_field_query_async(
field_name, op_str, val_list)
return future
def process_predefined_query_term(
field_name: str, op_str: str, val_str: str) -> Future:
"""Parse and run a simple query term."""
query_term = field_name + op_str + val_str
if query_term == 'deleted_unlisted_enterprise=false':
return process_exclude_deleted_unlisted_enterprise_query()
if query_term == 'deleted_unlisted=false':
return process_exclude_deleted_unlisted_query()
if query_term == 'pending-approval-by:me':
return process_pending_approval_me_query()
if query_term == 'starred-by:me':
return process_starred_me_query()
if query_term == 'is:recently-reviewed':
return process_recent_reviews_query()
if query_term == 'owner:me':
return search_queries.handle_me_query_async('owner')
if query_term == 'editor:me':
return search_queries.handle_me_query_async('editor')
if query_term == 'can_edit:me':
return search_queries.handle_can_edit_me_query_async()
if query_term == 'cc:me':
return search_queries.handle_me_query_async('cc')
return None
def is_predefined_query_term(
field_name: str, op_str: str, vals_str: str) -> bool:
"""Determine if a query is a simple query term."""
query_term = field_name + op_str + vals_str
return query_term in SIMPLE_QUERY_TERMS
def _resolve_promise_to_id_list(
list_or_future: Union[list, Future]) -> list[int]:
"""Given an object that might be a future or an ID list, return IDs."""
if type(list_or_future) == list:
logging.info('got list %r', list_or_future)
return list_or_future # Which is actually an ID list.
else:
future: Future = list_or_future
key_or_projection_list = future.get_result()
if key_or_projection_list and isinstance(key_or_projection_list[0], Key):
id_list = [k.integer_id() for k in key_or_projection_list]
logging.info('got key future that yielded %r', id_list)
else:
id_list = [proj.feature_id for proj in key_or_projection_list]
logging.info('got projection future that yielded %r', id_list)
return id_list
def _sort_by_total_order(
result_id_list: list[int], total_order_ids: list[int]) -> list[int]:
"""Sort the result_ids according to their position in the total order.
If some result ID is not present in the total order, use the feature ID
value itself as the sorting value, which will effectively put those
features at the end of the list in order of creation.
"""
total_order_dict = {}
# For each feature entry ID in the total-order list, record the index of
# the first time that it occurs. A feature could be in the list multiple
# times if it was produced via a join. E.g., sorting by gate.requested_on
# would have total_order_ids items for every gate, not just one per feature.
for idx, f_id in enumerate(total_order_ids):
if f_id not in total_order_dict:
total_order_dict[f_id] = idx
sorted_id_list = sorted(
result_id_list,
key=lambda f_id: total_order_dict.get(f_id, f_id))
return sorted_id_list
def make_cache_key(
user_query: str, sort_spec: str | None, show_unlisted: bool,
show_deleted: bool, show_enterprise: bool, start: int, num: int,
name_only: bool) -> str:
"""Return a redis key string to store cached search results."""
return '|'.join([
FeatureEntry.SEARCH_CACHE_KEY,
user_query,
'sort_spec=' + str(sort_spec),
'show_unlisted=' + str(show_unlisted),
'show_deleted=' + str(show_deleted),
'show_enterprise=' + str(show_enterprise),
'start=' + str(start),
'num=' + str(num),
'name_only=' + str(name_only),
])
def is_cacheable(user_query: str, name_only: bool):
"""Return True if this user query can be stored and viewed by other users."""
if not name_only:
logging.info('Search query not cached: could be large')
return False
if ':me' in user_query:
logging.info('Search query not cached: personalized')
return False
if ('is:recently-reviewed' in user_query or
'now' in user_query or
'current_stable' in user_query):
logging.info('Search query not cached: time-based')
return False
logging.info('Search query can be cached')
return True
def process_query_using_cache(
user_query: str,
sort_spec: str | None = None,
show_unlisted=False,
show_deleted=False,
show_enterprise=False,
start=0,
num=DEFAULT_RESULTS_PER_PAGE,
context: Optional[QueryContext] = None,
name_only=False,
) -> tuple[list[dict[str, Any]], int]:
""""""
num = min(num, MAX_RESULTS_PER_PAGE)
cache_key = make_cache_key(
user_query, sort_spec, show_unlisted, show_deleted, show_enterprise,
start, num, name_only)
if is_cacheable(user_query, name_only):
logging.info('Checking cache at %r', cache_key)
cached_result = rediscache.get(cache_key)
if cached_result is not None:
logging.info('Found cached search result for %r', cache_key)
return cached_result
logging.info('Computing search result')
computed_result = process_query(
user_query, sort_spec=sort_spec, show_unlisted=show_unlisted,
show_deleted=show_deleted, show_enterprise=show_enterprise,
start=start, num=num, context=context, name_only=name_only)
if is_cacheable(user_query, name_only):
logging.info('Storing search result in cache: %r', cache_key)
rediscache.set(cache_key, computed_result, SEARCH_CACHE_TTL)
return computed_result
def process_query(
user_query: str,
sort_spec: str | None = None,
show_unlisted=False,
show_deleted=False,
show_enterprise=False,
start=0,
num=DEFAULT_RESULTS_PER_PAGE,
context: Optional[QueryContext] = None,
name_only=False,
) -> tuple[list[dict[str, Any]], int]:
if context is None:
context = QueryContext.current()
"""Parse the user's query, run it, and return a list of features."""
# 1a. Parse the user query into terms.
terms = TERM_RE.findall(user_query + ' ')[:MAX_TERMS] or []
# 1b. Add permission and search scope terms.
permission_terms = []
if not show_deleted and not show_unlisted and not show_enterprise:
permission_terms.append(
('', 'deleted_unlisted_enterprise', '=', 'false', None))
elif not show_deleted and not show_unlisted:
permission_terms.append(
('', 'deleted_unlisted', '=', 'false', None))
else:
if not show_deleted:
permission_terms.append(('', 'deleted', '=', 'false', None))
# TODO(jrobbins): include unlisted features that the user is allowed to view.
# However, that would greatly complicate the search cache.
if not show_unlisted:
permission_terms.append(('', 'unlisted', '=', 'false', None))
if not show_enterprise:
permission_terms.append(
('', 'feature_type', '<=',
str(core_enums.FEATURE_TYPE_DEPRECATION_ID), None))
# 1c. Parse the sort directive.
sort_spec = sort_spec or '-created.when'
# 2a. Create parallel queries for each term. Each yields a future.
logging.info('creating parallel queries for %r', terms)
feature_id_future_ops = create_future_operations_from_queries(terms, context)
# 2b. Create parallel queries for each permission queries.
logging.info('creating parallel queries for %r', permission_terms)
permissions_future_ops = create_future_operations_from_queries(
permission_terms, context
)
# 2c. Create a parallel query for total sort order.
logging.info('creating total sort order for %r', sort_spec)
total_order_promise = search_queries.total_order_query_async(sort_spec)
# 3. Get the result of each future and combine them into a result ID set.
logging.info('now waiting on futures')
# 3a. Process user query: negation, AND, and OR.
feature_id_future_ops = process_negation_operations(feature_id_future_ops)
query_clauses = process_and_operations(feature_id_future_ops)
result_id_set = process_or_operations(query_clauses)
logging.info('got %r result IDs w/o permissions', len(result_id_set))
# 3b. Process all permission ops, then interesect to apply permisisons.
permission_clauses = process_and_operations(permissions_future_ops)
permission_ids = process_or_operations(permission_clauses)
result_id_set.intersection_update(permission_ids)
logging.info('got %r result IDs with permissions', len(result_id_set))
result_id_list = list(result_id_set)
total_count = len(result_id_list)
# 4. Finish getting the total sort order. Then, sort the IDs according
# to their position in the complete sorted list.
total_order_ids = _resolve_promise_to_id_list(total_order_promise)
logging.info('sorting')
sorted_id_list = _sort_by_total_order(result_id_list, total_order_ids)
logging.info('sorted %r result IDs', len(sorted_id_list))
# 5. Paginate
paginated_id_list = sorted_id_list[start : start + num]
# 6. Fetch the actual issues that have those IDs in the sorted results.
if name_only:
features_on_page = feature_helpers.get_feature_names_by_ids(paginated_id_list)
else:
features_on_page = feature_helpers.get_by_ids(paginated_id_list)
logging.info('features_on_page is %r',
[f['name'] for f in features_on_page])
return features_on_page, total_count
def create_future_operations_from_queries(terms, context: QueryContext):
"""Create parallel queries for each term. Each yields a future operation"""
feature_id_future_ops = []
for logical_op, field_name, op_str, vals_str, textterm in terms:
is_negation = (logical_op.strip() == '-')
is_normal_query = False
if textterm:
future = search_fulltext.search_fulltext(textterm)
elif is_predefined_query_term(field_name, op_str, vals_str):
logging.info('Running predefined query term: %r %r %r',
field_name, op_str, vals_str)
future = process_predefined_query_term(field_name, op_str, vals_str)
else:
future = process_query_term(is_negation, field_name, op_str, vals_str, context)
is_normal_query = True
if future is None:
continue
if is_negation and is_normal_query:
feature_id_future_ops.append(('', future))
else:
feature_id_future_ops.append((logical_op.strip(), future))
return feature_id_future_ops
def process_or_operations(or_clauses):
"""Process OR operations for all id sets."""
# If there were no conditions, all features match.
if not or_clauses:
return fetch_all_feature_ids_set()
result_id_set = set()
for id_set in or_clauses:
result_id_set.update(id_set)
return result_id_set
def process_and_operations(feature_id_future_ops):
""" Process all AND operations in between OR clauses."""
or_clauses = []
current_result_set = None
for logical_op, future in feature_id_future_ops:
if logical_op == 'OR' and current_result_set is not None:
# Add the proceeding AND result
or_clauses.append(current_result_set)
current_result_set = None
if type(future) == set:
feature_ids = future
else:
feature_ids = _resolve_promise_to_id_list(future)
if current_result_set is None:
logging.info('first term yields %r', feature_ids)
current_result_set = set(feature_ids)
continue
logging.info('combining result so far with %r', feature_ids)
current_result_set.intersection_update(feature_ids)
if current_result_set is not None:
or_clauses.append(current_result_set)
return or_clauses
def process_negation_operations(feature_id_future_ops):
""" Turn all negation operations into AND operations."""
new_future_ops = []
all_ids_set = None
for logical_op, future in feature_id_future_ops:
if logical_op != '-':
# Skip all non-negation operations.
new_future_ops.append((logical_op, future))
continue
if all_ids_set is None:
all_ids_set = fetch_all_feature_ids_set()
feature_ids = _resolve_promise_to_id_list(future)
result_set = all_ids_set.difference(feature_ids)
new_future_ops.append(('', result_set))
return new_future_ops
def fetch_all_feature_ids_set():
"""Fetch all FeatureEntry ids. """
all_feature_keys = FeatureEntry.query().fetch(keys_only=True)
feature_ids_set = set(key.integer_id() for key in all_feature_keys)
return feature_ids_set