forked from collin80/ESP32RET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sys_io.cpp
152 lines (128 loc) · 4.47 KB
/
sys_io.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*
* sys_io.cpp
*
* Handles the low level details of system I/O
*
Copyright (c) 2013-2018 Collin Kidder, Michael Neuweiler, Charles Galpin
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
some portions based on code credited as:
Arduino Due ADC->DMA->USB 1MSPS
by stimmer
*/
#include "sys_io.h"
bool useRawADC = false;
#undef HID_ENABLED
uint8_t dig[NUM_DIGITAL]; //digital inputs. sudo/analogue inputs
uint8_t adc[NUM_ANALOG][2]; // [x][0]This holds the ADC Channel number. // This is calculated in sys_early_setup()
// [x][1]This holds the pointer of the ADC number position into the adc_buf[x][x] array (Now redundent).
// This is calculated in sys_early_setup()
uint8_t out[NUM_OUTPUT]; //digital output configuration details
uint32_t Enabled_Analogue_Pins = 0; // Sum of ADC input numbers to load into ADC_CHER
ADC_COMP adc_comp[NUM_ANALOG]; //holds ADC offset or gain
//forces the digital I/O ports to a safe state. This is called very early in initialization.
void sys_early_setup(){
uint8_t i;
}
/*
Initialize DMA driven ADC and read in gain/offset for each channel
*/
void setup_sys_io()
{
uint8_t i;
setupFastADC();
}
/*
Setup the system to continuously read the proper ADC channels and use DMA to place the results into RAM
Testing to find a good batch of settings for how fast to do ADC readings. The relevant areas:
1. In the adc_init call it is possible to use something other than ADC_FREQ_MAX to slow down the ADC clock
2. ADC_MR has a clock divisor, start up time, settling time, tracking time, and transfer time. These can be adjusted
*/
void setupFastADC(){
Logger::debug("Fast ADC Mode Enabled");
}
/*
get value of one of the 9 analog inputs 0->(NUM_ANALOG - 1)
Uses a special buffer which has smoothed and corrected ADC values. This call is very fast
because the actual work is done via DMA and then a separate polled step.
*/
uint16_t getAnalog(uint8_t which)
{
if (which >= NUM_ANALOG) which = 0;
if (adc[which][0] > 15) which = 0;
return 0;//adc_out_vals[which];
}
/*
get value of one of the sudo 6 digital/Analogue inputs 0->(NUM_DIGITAL - 1)
*/
boolean getDigital(uint8_t which)
{
if((which >= NUM_OUTPUT) || (dig[which] == 255)){
return(false);
}
return(false); //(adc_out_vals[which] > 200) ? true : false);
}
//set output high or not
void setOutput(uint8_t which, boolean active)
{
if((which >= NUM_OUTPUT) || (out[which] == 255)){
return;
}
if(active){
(which <= 2) ? digitalWrite(out[which], HIGH) : digitalWrite(out[which], LOW);
}else{
(which <= 2) ? digitalWrite(out[which], LOW) : digitalWrite(out[which], HIGH);
}
}
//get current value of output state (high?)
boolean getOutput(uint8_t which)
{
if((which >= NUM_OUTPUT) || (out[which] == 255)){
return false;
}
return digitalRead(out[which]);
}
void setLED(uint8_t which, boolean hi){
if(which == 255){
return;
}
if(hi){
digitalWrite(which, HIGH);
} else{
digitalWrite(which, LOW);
}
}
void toggleRXLED()
{
static int counter = 0;
counter++;
if (counter >= BLINK_SLOWNESS) {
counter = 0;
SysSettings.rxToggle = !SysSettings.rxToggle;
setLED(SysSettings.LED_CANRX, SysSettings.rxToggle);
}
}
void toggleTXLED()
{
static int counter = 0;
counter++;
if (counter >= BLINK_SLOWNESS) {
counter = 0;
SysSettings.txToggle = !SysSettings.txToggle;
setLED(SysSettings.LED_CANTX, SysSettings.txToggle);
}
}