|
18 | 18 | "import dash\n",
|
19 | 19 | "import dash_core_components as dcc\n",
|
20 | 20 | "import dash_html_components as html\n",
|
21 |
| - "from dash.dependencies import Input, Output, Event\n", |
| 21 | + "from dash.dependencies import Input, Output\n", |
22 | 22 | "\n",
|
23 | 23 | "dd = JupyterDash('SomeID')\n",
|
24 | 24 | "\n",
|
|
46 | 46 | "data": {
|
47 | 47 | "text/html": [
|
48 | 48 | "<div>\n",
|
49 |
| - " <iframe src=\"/app/endpoints/94c8490f5bbb4ed58b0393901d38f715/\" width=600 height=200 frameborder=\"0\"></iframe>\n", |
50 |
| - " <hr/><a href=\"/app/endpoints/94c8490f5bbb4ed58b0393901d38f715/\" target=\"_new\">Open in new window</a> for /app/endpoints/94c8490f5bbb4ed58b0393901d38f715/\n", |
| 49 | + " <iframe src=\"/app/endpoints/2f2216256833454083843ddf993755de/\" width=600 height=200 frameborder=\"0\"></iframe>\n", |
| 50 | + " <hr/><a href=\"/app/endpoints/2f2216256833454083843ddf993755de/\" target=\"_new\">Open in new window</a> for /app/endpoints/2f2216256833454083843ddf993755de/\n", |
51 | 51 | "</div>"
|
52 | 52 | ],
|
53 | 53 | "text/plain": [
|
54 |
| - "<jupyter_plotly_dash.dash_wrapper.JupyterDash at 0x7ff31ed10e48>" |
| 54 | + "<jupyter_plotly_dash.dash_wrapper.JupyterDash at 0x7f44e5bd7518>" |
55 | 55 | ]
|
56 | 56 | },
|
57 | 57 | "execution_count": 3,
|
|
73 | 73 | {
|
74 | 74 | "data": {
|
75 | 75 | "text/plain": [
|
76 |
| - "'/app/endpoints/94c8490f5bbb4ed58b0393901d38f715/'" |
| 76 | + "'/app/endpoints/2f2216256833454083843ddf993755de/'" |
77 | 77 | ]
|
78 | 78 | },
|
79 | 79 | "execution_count": 4,
|
|
104 | 104 | },
|
105 | 105 | {
|
106 | 106 | "cell_type": "code",
|
107 |
| - "execution_count": 7, |
| 107 | + "execution_count": 6, |
108 | 108 | "metadata": {},
|
109 | 109 | "outputs": [
|
110 | 110 | {
|
|
116 | 116 | "</div>"
|
117 | 117 | ],
|
118 | 118 | "text/plain": [
|
119 |
| - "<jupyter_plotly_dash.dash_wrapper.JupyterDash at 0x7ff31ed10e48>" |
| 119 | + "<jupyter_plotly_dash.dash_wrapper.JupyterDash at 0x7f44e5bd7518>" |
120 | 120 | ]
|
121 | 121 | },
|
122 |
| - "execution_count": 7, |
| 122 | + "execution_count": 6, |
123 | 123 | "metadata": {},
|
124 | 124 | "output_type": "execute_result"
|
125 | 125 | }
|
|
130 | 130 | },
|
131 | 131 | {
|
132 | 132 | "cell_type": "code",
|
133 |
| - "execution_count": 8, |
| 133 | + "execution_count": 7, |
134 | 134 | "metadata": {},
|
135 | 135 | "outputs": [],
|
136 | 136 | "source": [
|
|
179 | 179 | "@a2.expanded_callback(\n",
|
180 | 180 | " dash.dependencies.Output('output-one','children'),\n",
|
181 | 181 | " [dash.dependencies.Input('dropdown-one','value')],\n",
|
182 |
| - " events = [Event(component_id=\"ticking-interval\", component_event=\"interval\")]\n", |
| 182 | + " #events = [Event(component_id=\"ticking-interval\", component_event=\"interval\")]\n", |
183 | 183 | " )\n",
|
184 | 184 | "def callback_c(*args,**kwargs):\n",
|
185 | 185 | " session_state = kwargs.get('session_state', None)\n",
|
|
195 | 195 | },
|
196 | 196 | {
|
197 | 197 | "cell_type": "code",
|
198 |
| - "execution_count": 9, |
| 198 | + "execution_count": 8, |
199 | 199 | "metadata": {},
|
200 | 200 | "outputs": [
|
201 | 201 | {
|
202 | 202 | "data": {
|
203 | 203 | "text/html": [
|
204 | 204 | "<div>\n",
|
205 |
| - " <iframe src=\"/app/endpoints/5687aa1890684b20a59d11f3c0134f6b/\" width=800 height=100 frameborder=\"0\"></iframe>\n", |
206 |
| - " <hr/><a href=\"/app/endpoints/5687aa1890684b20a59d11f3c0134f6b/\" target=\"_new\">Open in new window</a> for /app/endpoints/5687aa1890684b20a59d11f3c0134f6b/\n", |
| 205 | + " <iframe src=\"/app/endpoints/58cceed54a4c4c28988d2d255833b001/\" width=800 height=100 frameborder=\"0\"></iframe>\n", |
| 206 | + " <hr/><a href=\"/app/endpoints/58cceed54a4c4c28988d2d255833b001/\" target=\"_new\">Open in new window</a> for /app/endpoints/58cceed54a4c4c28988d2d255833b001/\n", |
207 | 207 | "</div>"
|
208 | 208 | ],
|
209 | 209 | "text/plain": [
|
210 |
| - "<jupyter_plotly_dash.dash_wrapper.JupyterDash at 0x7ff31f307320>" |
| 210 | + "<jupyter_plotly_dash.dash_wrapper.JupyterDash at 0x7f44c219a160>" |
211 | 211 | ]
|
212 | 212 | },
|
213 |
| - "execution_count": 9, |
| 213 | + "execution_count": 8, |
214 | 214 | "metadata": {},
|
215 | 215 | "output_type": "execute_result"
|
216 | 216 | }
|
|
222 | 222 | },
|
223 | 223 | {
|
224 | 224 | "cell_type": "code",
|
225 |
| - "execution_count": 10, |
| 225 | + "execution_count": 9, |
226 | 226 | "metadata": {},
|
227 | 227 | "outputs": [
|
228 | 228 | {
|
229 | 229 | "data": {
|
230 | 230 | "text/html": [
|
231 | 231 | "<div>\n",
|
232 |
| - " <iframe src=\"/app/endpoints/ee61934d7c804ce1aecb5c596b34eb43/\" width=800 height=100 frameborder=\"0\"></iframe>\n", |
233 |
| - " <hr/><a href=\"/app/endpoints/ee61934d7c804ce1aecb5c596b34eb43/\" target=\"_new\">Open in new window</a> for /app/endpoints/ee61934d7c804ce1aecb5c596b34eb43/\n", |
| 232 | + " <iframe src=\"/app/endpoints/ff6cf46043a848b696a66ffeedcee85b/\" width=800 height=100 frameborder=\"0\"></iframe>\n", |
| 233 | + " <hr/><a href=\"/app/endpoints/ff6cf46043a848b696a66ffeedcee85b/\" target=\"_new\">Open in new window</a> for /app/endpoints/ff6cf46043a848b696a66ffeedcee85b/\n", |
234 | 234 | "</div>"
|
235 | 235 | ],
|
236 | 236 | "text/plain": [
|
237 |
| - "<jupyter_plotly_dash.dash_wrapper.JupyterDash at 0x7ff31f307630>" |
| 237 | + "<jupyter_plotly_dash.dash_wrapper.JupyterDash at 0x7f44c219a3c8>" |
238 | 238 | ]
|
239 | 239 | },
|
240 |
| - "execution_count": 10, |
| 240 | + "execution_count": 9, |
241 | 241 | "metadata": {},
|
242 | 242 | "output_type": "execute_result"
|
243 | 243 | }
|
|
249 | 249 | },
|
250 | 250 | {
|
251 | 251 | "cell_type": "code",
|
252 |
| - "execution_count": 11, |
| 252 | + "execution_count": 10, |
253 | 253 | "metadata": {},
|
254 | 254 | "outputs": [],
|
255 | 255 | "source": [
|
|
261 | 261 | },
|
262 | 262 | {
|
263 | 263 | "cell_type": "code",
|
264 |
| - "execution_count": 12, |
| 264 | + "execution_count": 11, |
265 | 265 | "metadata": {},
|
266 | 266 | "outputs": [
|
267 | 267 | {
|
268 | 268 | "data": {
|
269 | 269 | "text/html": [
|
270 | 270 | "<div>\n",
|
271 |
| - " <iframe src=\"/app/endpoints/ee61934d7c804ce1aecb5c596b34eb43/\" width=800 height=100 frameborder=\"0\"></iframe>\n", |
272 |
| - " <hr/><a href=\"/app/endpoints/ee61934d7c804ce1aecb5c596b34eb43/\" target=\"_new\">Open in new window</a> for /app/endpoints/ee61934d7c804ce1aecb5c596b34eb43/\n", |
| 271 | + " <iframe src=\"/app/endpoints/ff6cf46043a848b696a66ffeedcee85b/\" width=800 height=100 frameborder=\"0\"></iframe>\n", |
| 272 | + " <hr/><a href=\"/app/endpoints/ff6cf46043a848b696a66ffeedcee85b/\" target=\"_new\">Open in new window</a> for /app/endpoints/ff6cf46043a848b696a66ffeedcee85b/\n", |
273 | 273 | "</div>"
|
274 | 274 | ],
|
275 | 275 | "text/plain": [
|
276 |
| - "<jupyter_plotly_dash.dash_wrapper.JupyterDash at 0x7ff31f307630>" |
| 276 | + "<jupyter_plotly_dash.dash_wrapper.JupyterDash at 0x7f44c219a3c8>" |
277 | 277 | ]
|
278 | 278 | },
|
279 |
| - "execution_count": 12, |
| 279 | + "execution_count": 11, |
280 | 280 | "metadata": {},
|
281 | 281 | "output_type": "execute_result"
|
282 | 282 | }
|
|
287 | 287 | },
|
288 | 288 | {
|
289 | 289 | "cell_type": "code",
|
290 |
| - "execution_count": null, |
| 290 | + "execution_count": 12, |
291 | 291 | "metadata": {},
|
292 | 292 | "outputs": [],
|
293 | 293 | "source": [
|
|
296 | 296 | },
|
297 | 297 | {
|
298 | 298 | "cell_type": "code",
|
299 |
| - "execution_count": null, |
| 299 | + "execution_count": 13, |
300 | 300 | "metadata": {},
|
301 |
| - "outputs": [], |
| 301 | + "outputs": [ |
| 302 | + { |
| 303 | + "name": "stdout", |
| 304 | + "output_type": "stream", |
| 305 | + "text": [ |
| 306 | + "dash_app magic\n", |
| 307 | + "feed\n", |
| 308 | + "None\n" |
| 309 | + ] |
| 310 | + } |
| 311 | + ], |
302 | 312 | "source": [
|
303 | 313 | "%dash_app feed"
|
304 | 314 | ]
|
305 | 315 | },
|
306 | 316 | {
|
307 | 317 | "cell_type": "code",
|
308 |
| - "execution_count": null, |
| 318 | + "execution_count": 14, |
309 | 319 | "metadata": {},
|
310 | 320 | "outputs": [],
|
311 | 321 | "source": [
|
|
314 | 324 | },
|
315 | 325 | {
|
316 | 326 | "cell_type": "code",
|
317 |
| - "execution_count": null, |
| 327 | + "execution_count": 15, |
318 | 328 | "metadata": {},
|
319 |
| - "outputs": [], |
| 329 | + "outputs": [ |
| 330 | + { |
| 331 | + "data": { |
| 332 | + "text/plain": [ |
| 333 | + "{}" |
| 334 | + ] |
| 335 | + }, |
| 336 | + "execution_count": 15, |
| 337 | + "metadata": {}, |
| 338 | + "output_type": "execute_result" |
| 339 | + } |
| 340 | + ], |
320 | 341 | "source": [
|
321 | 342 | "app.app_state"
|
322 | 343 | ]
|
323 | 344 | },
|
324 | 345 | {
|
325 | 346 | "cell_type": "code",
|
326 |
| - "execution_count": null, |
| 347 | + "execution_count": 16, |
327 | 348 | "metadata": {},
|
328 |
| - "outputs": [], |
| 349 | + "outputs": [ |
| 350 | + { |
| 351 | + "data": { |
| 352 | + "application/vnd.jupyter.widget-view+json": { |
| 353 | + "model_id": "e14393b0cbf4489ca495d227ab79f8ee", |
| 354 | + "version_major": 2, |
| 355 | + "version_minor": 0 |
| 356 | + }, |
| 357 | + "text/plain": [ |
| 358 | + "Button(description='Click Me!', style=ButtonStyle())" |
| 359 | + ] |
| 360 | + }, |
| 361 | + "metadata": {}, |
| 362 | + "output_type": "display_data" |
| 363 | + } |
| 364 | + ], |
329 | 365 | "source": [
|
330 | 366 | "import ipywidgets as widgets\n",
|
331 | 367 | "from IPython.display import display\n",
|
|
341 | 377 | },
|
342 | 378 | {
|
343 | 379 | "cell_type": "code",
|
344 |
| - "execution_count": null, |
| 380 | + "execution_count": 17, |
345 | 381 | "metadata": {},
|
346 |
| - "outputs": [], |
| 382 | + "outputs": [ |
| 383 | + { |
| 384 | + "data": { |
| 385 | + "text/plain": [ |
| 386 | + "{}" |
| 387 | + ] |
| 388 | + }, |
| 389 | + "execution_count": 17, |
| 390 | + "metadata": {}, |
| 391 | + "output_type": "execute_result" |
| 392 | + } |
| 393 | + ], |
347 | 394 | "source": [
|
348 | 395 | "dd.app_state"
|
349 | 396 | ]
|
350 | 397 | },
|
351 | 398 | {
|
352 | 399 | "cell_type": "code",
|
353 |
| - "execution_count": null, |
| 400 | + "execution_count": 18, |
354 | 401 | "metadata": {},
|
355 |
| - "outputs": [], |
| 402 | + "outputs": [ |
| 403 | + { |
| 404 | + "name": "stdout", |
| 405 | + "output_type": "stream", |
| 406 | + "text": [ |
| 407 | + "config dir: /home/mark/local/jpd/env/etc/jupyter\n", |
| 408 | + " jupyter_plotly_dash.serverext \u001b[32m enabled \u001b[0m\n", |
| 409 | + " - Validating...\n", |
| 410 | + " jupyter_plotly_dash.serverext \u001b[32mOK\u001b[0m\n", |
| 411 | + " nbserverproxy \u001b[32m enabled \u001b[0m\n", |
| 412 | + " - Validating...\n", |
| 413 | + " nbserverproxy \u001b[32mOK\u001b[0m\n" |
| 414 | + ] |
| 415 | + } |
| 416 | + ], |
356 | 417 | "source": [
|
357 | 418 | "!jupyter serverextension list"
|
358 | 419 | ]
|
|
381 | 442 | "name": "python",
|
382 | 443 | "nbconvert_exporter": "python",
|
383 | 444 | "pygments_lexer": "ipython3",
|
384 |
| - "version": "3.6.5" |
| 445 | + "version": "3.6.8" |
385 | 446 | }
|
386 | 447 | },
|
387 | 448 | "nbformat": 4,
|
|
0 commit comments