@@ -36,7 +36,27 @@ def fixture_gdf():
36
36
index = ["multipolygon" , "polygon" , "linestring" ],
37
37
geometry = [multipolygon , polygon , linestring ],
38
38
)
39
+ return gdf
40
+
39
41
42
+ @pytest .fixture (scope = "module" , name = "gdf_ridge" )
43
+ def fixture_gdf_ridge ():
44
+ """
45
+ Read a @RidgeTest.shp shapefile into a geopandas.GeoDataFrame and reproject
46
+ the geometry.
47
+ """
48
+ # Read shapefile into a geopandas.GeoDataFrame
49
+ shapefile = which (
50
+ fname = "@RidgeTest.shp @RidgeTest.shx @RidgeTest.dbf @RidgeTest.prj" ,
51
+ download = "c" ,
52
+ )
53
+ gdf = gpd .read_file (shapefile [0 ])
54
+ # Reproject the geometry
55
+ gdf ["geometry" ] = (
56
+ gdf .to_crs (crs = "EPSG:3857" )
57
+ .buffer (distance = 100000 )
58
+ .to_crs (crs = "OGC:CRS84" ) # convert to lon/lat to prevent @null in PROJ CRS
59
+ )
40
60
return gdf
41
61
42
62
@@ -144,40 +164,60 @@ def test_geopandas_plot3d_non_default_circle():
144
164
],
145
165
)
146
166
@pytest .mark .mpl_image_compare (filename = "test_geopandas_plot_int_dtypes.png" )
147
- def test_geopandas_plot_int_dtypes (dtype ):
167
+ def test_geopandas_plot_int_dtypes (gdf_ridge , dtype ):
148
168
"""
149
- Check that plotting a geopandas GeoDataFrame with integer columns works,
169
+ Check that plotting a geopandas. GeoDataFrame with integer columns works,
150
170
including int32 and int64 (non-nullable), Int32 and Int64 (nullable).
151
171
152
172
This is a regression test for
153
173
https://github.com/GenericMappingTools/pygmt/issues/2497
154
174
"""
155
- # Read shapefile in geopandas.GeoDataFrame
156
- shapefile = which (
157
- fname = "@RidgeTest.shp @RidgeTest.shx @RidgeTest.dbf @RidgeTest.prj" ,
158
- download = "c" ,
159
- )
160
- gdf = gpd .read_file (shapefile [0 ])
175
+ # Convert NPOINTS column to integer type
176
+ gdf_ridge ["NPOINTS" ] = gdf_ridge .NPOINTS .astype (dtype = dtype )
161
177
162
- # Reproject geometry and change dtype of NPOINTS column
163
- gdf ["geometry" ] = (
164
- gdf .to_crs (crs = "EPSG:3857" )
165
- .buffer (distance = 100000 )
166
- .to_crs (crs = "OGC:CRS84" ) # convert to lon/lat to prevent @null in PROJ CRS
178
+ # Plot figure with three polygons colored based on NPOINTS value
179
+ fig = Figure ()
180
+ makecpt (cmap = "lisbon" , series = [10 , 60 , 10 ], continuous = True )
181
+ fig .plot (
182
+ data = gdf_ridge ,
183
+ frame = True ,
184
+ pen = "1p,black" ,
185
+ fill = "+z" ,
186
+ cmap = True ,
187
+ aspatial = "Z=NPOINTS" ,
167
188
)
168
- gdf ["NPOINTS" ] = gdf .NPOINTS .astype (dtype = dtype )
189
+ fig .colorbar ()
190
+ return fig
191
+
192
+
193
+ @pytest .mark .mpl_image_compare (filename = "test_geopandas_plot_int_dtypes.png" )
194
+ def test_geopandas_plot_int64_as_float (gdf_ridge ):
195
+ """
196
+ Check that big 64-bit integers are correctly mapped to float type in
197
+ geopandas.GeoDataFrame object.
198
+ """
199
+ factor = 2 ** 32
200
+ # Convert NPOINTS column to int64 type and make big integers
201
+ gdf_ridge ["NPOINTS" ] = gdf_ridge .NPOINTS .astype (dtype = "int64" )
202
+ gdf_ridge ["NPOINTS" ] *= factor
203
+
204
+ # Make sure the column is bigger than the largest 32-bit integer
205
+ assert gdf_ridge ["NPOINTS" ].abs ().max () > 2 ** 31 - 1
169
206
170
207
# Plot figure with three polygons colored based on NPOINTS value
171
208
fig = Figure ()
172
- makecpt (cmap = "lisbon" , series = [10 , 60 , 10 ], continuous = True )
209
+ makecpt (
210
+ cmap = "lisbon" , series = [10 * factor , 60 * factor , 10 * factor ], continuous = True
211
+ )
173
212
fig .plot (
174
- data = gdf ,
213
+ data = gdf_ridge ,
175
214
frame = True ,
176
215
pen = "1p,black" ,
177
- close = True ,
178
216
fill = "+z" ,
179
217
cmap = True ,
180
218
aspatial = "Z=NPOINTS" ,
181
219
)
220
+ # Generate a CPT for 10-60 range and plot to reuse the baseline image
221
+ makecpt (cmap = "lisbon" , series = [10 , 60 , 10 ], continuous = True )
182
222
fig .colorbar ()
183
223
return fig
0 commit comments