Skip to content

Commit 4d9f897

Browse files
authored
Improve the workarounds for handling pandas nullable dtypes in pandas<=2.1 (#3596)
1 parent 112db17 commit 4d9f897

File tree

1 file changed

+25
-12
lines changed

1 file changed

+25
-12
lines changed

pygmt/clib/conversion.py

+25-12
Original file line numberDiff line numberDiff line change
@@ -168,19 +168,32 @@ def _to_numpy(data: Any) -> np.ndarray:
168168
"date64[ms][pyarrow]": "datetime64[ms]",
169169
}
170170

171+
# The dtype for the input object.
172+
dtype = getattr(data, "dtype", getattr(data, "type", ""))
173+
# The numpy dtype for the result numpy array, but can be None.
174+
numpy_dtype = dtypes.get(str(dtype))
175+
176+
# pandas numeric dtypes were converted to np.object_ dtype prior pandas 2.2, and are
177+
# converted to suitable NumPy dtypes since pandas 2.2. Refer to the following link
178+
# for details: https://pandas.pydata.org/docs/whatsnew/v2.2.0.html#to-numpy-for-numpy-nullable-and-arrow-types-converts-to-suitable-numpy-dtype
179+
#
180+
# Workarounds for pandas < 2.2. Following SPEC 0, pandas 2.1 should be dropped in
181+
# 2025 Q3, so it's likely we can remove the workaround in PyGMT v0.17.0.
171182
if (
172-
hasattr(data, "isna")
173-
and data.isna().any()
174-
and Version(pd.__version__) < Version("2.2")
175-
):
176-
# Workaround for dealing with pd.NA with pandas < 2.2.
177-
# Bug report at: https://github.com/GenericMappingTools/pygmt/issues/2844
178-
# Following SPEC0, pandas 2.1 will be dropped in 2025 Q3, so it's likely
179-
# we can remove the workaround in PyGMT v0.17.0.
180-
array = np.ascontiguousarray(data.astype(float))
181-
else:
182-
vec_dtype = str(getattr(data, "dtype", getattr(data, "type", "")))
183-
array = np.ascontiguousarray(data, dtype=dtypes.get(vec_dtype))
183+
Version(pd.__version__) < Version("2.2") # pandas < 2.2 only.
184+
and hasattr(data, "dtype") # NumPy array or pandas objects only.
185+
and hasattr(data.dtype, "numpy_dtype") # pandas dtypes only.
186+
and data.dtype.kind in "iuf" # Numeric dtypes only.
187+
): # pandas Series/Index with pandas nullable numeric dtypes.
188+
# The numpy dtype of the result numpy array.
189+
numpy_dtype = data.dtype.numpy_dtype
190+
if getattr(data, "hasnans", False):
191+
if data.dtype.kind in "iu":
192+
# Integers with missing values are converted to float64.
193+
numpy_dtype = np.float64
194+
data = data.to_numpy(na_value=np.nan)
195+
196+
array = np.ascontiguousarray(data, dtype=numpy_dtype)
184197

185198
# Check if a np.object_ array can be converted to np.str_.
186199
if array.dtype == np.object_:

0 commit comments

Comments
 (0)