-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunctions.R
340 lines (294 loc) · 13.6 KB
/
functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#### FUNCTIONS ####
##### Find the directory of a file named app.R #####
find_directory_of_file <- function(file_name, start_dir=getwd()) {
# Recursively list all files starting from the start_dir
app_dir <- fs::dir_ls(start_dir, recurse = TRUE, glob=file_name)
# Check if any file named app.R is found
if (length(app_dir) > 0) {
# Assuming you want the directory of the first matching file
file_dir <- fs::path_dir(app_dir[1])
return(file_dir)
} else {
return(NULL) # Return NULL if the file is not found
}
}
##### Filter df for station (click on plot) and date range, and make wide #####
# make dataframe for click plots - filter for correct stations
# and the date picker: so this takes 2 reactive values, stationCode and
# selected_date_range
filter_dataframe <- function(df, filter_value = NULL, date_range = NULL) {
if (!is.null(filter_value)) {
# Step 1: Identify the relevant RowIDs
relevant_row_ids <- df %>%
filter(value == filter_value) %>%
pull(RowID)
# Step 2: Filter the entire dataframe to keep only rows with the relevant RowIDs
filtered_df <- df %>%
filter(RowID %in% relevant_row_ids)
} else {
# If no filter_value is provided, skip the filtering step
filtered_df <- df
}
# Step 3: Create wide dataframe
wide_df <- filtered_df %>%
pivot_wider(names_from = variable, values_from = value, values_fn = first) %>%
filter(!is.na(ComponentLong)) %>% # stop gap measure because there are NAs from
# replacing ComponentLong names in the cleaning script
select(SampleDate, # we could also make these arguments for the function?
ComponentLong,
Result,
geometry, StationCode, site_friendly) %>%
pivot_wider(names_from = ComponentLong,
values_from = Result,
values_fn = list(Result = ~ mean(as.numeric(.), na.rm = TRUE))) %>%
#mutate(SampleDate = ymd_hms(SampleDate)) %>% #
mutate(SampleDate = str_extract(SampleDate, "[0-9]{4}-[0-9]{2}-[0-9]{2}")) %>%
mutate(SampleDate = ymd(SampleDate)) %>% # these two lines are another option to only get ymd,
# needed to use this since some datasets only have ymd (no hms) so that makes ymd_hms fail
#mutate(across(-c(SampleDate, geometry, StationCode, site_friendly), ~ as.numeric(.))) %>%
#mutate(SampleDate = as.Date(SampleDate)) %>%
group_by(SampleDate, geometry, StationCode, site_friendly) %>%
summarize(across(everything(), ~mean(.x, na.rm = TRUE))) #%>% # across(everything()) is not necessary,
# strictly speaking, but it's nice to keep for if we ever want to adjust this function
# to work for more than 1 variable
#select(where(~ n_distinct(.) > 2))
if(!is.null(date_range)){
wide_df <- filter(wide_df, between(SampleDate, date_range[1], date_range[2]))
}
return(wide_df)
}
##### Filter df for station (click on plot) and date range, and variable, and make wide #####
# Adjusted to filter for more than 1 station
filter_dataframe2 <- function(df, filter_station = NULL, date_range = NULL, filter_value = NULL) {
if (!is.null(filter_station)) {
# Step 1: Identify the relevant RowIDs
relevant_row_ids <- df %>%
filter(value %in% filter_station) %>%
pull(RowID)
# Step 2: Filter the entire dataframe to keep only rows with the relevant RowIDs
filtered_df <- df %>%
filter(RowID %in% relevant_row_ids)
} else {
# If no filter_station is provided, skip the filtering step
filtered_df <- df
}
# Step 3: Create wide dataframe
wide_df <- filtered_df %>%
pivot_wider(names_from = variable, values_from = value, values_fn = first) %>%
filter(!is.na(ComponentLong)) %>% # stop gap measure because there are NAs from
# replacing ComponentLong names in the cleaning script
select(SampleDate, # we could also make these arguments for the function?
ComponentLong,
Result,
geometry, StationCode, site_friendly) %>%
pivot_wider(names_from = ComponentLong,
values_from = Result,
values_fn = list(Result = ~ mean(as.numeric(.), na.rm = TRUE))) %>%
#mutate(SampleDate = ymd_hms(SampleDate)) %>% #
mutate(SampleDate = str_extract(SampleDate, "[0-9]{4}-[0-9]{2}-[0-9]{2}")) %>%
mutate(SampleDate = ymd(SampleDate)) %>% # these two lines are another option to only get ymd,
# needed to use this since some datasets only have ymd (no hms) so that makes ymd_hms fail
#mutate(across(-c(SampleDate, geometry, StationCode, site_friendly), ~ as.numeric(.))) %>%
#mutate(SampleDate = as.Date(SampleDate)) %>%
group_by(SampleDate, geometry, StationCode, site_friendly) %>%
summarize(across(everything(), ~mean(.x, na.rm = TRUE))) #%>% # across(everything()) is not necessary,
# strictly speaking, but it's nice to keep for if we ever want to adjust this function
# to work for more than 1 variable
#select(where(~ n_distinct(.) > 2))
if(!is.null(date_range)){
wide_df <- filter(wide_df, between(SampleDate, ymd(date_range[1]), ymd(date_range[2])))
}
if(!is.null(filter_value)){
if(filter_value %in% names(wide_df)){
wide_df <- wide_df %>%
select(SampleDate, geometry, StationCode, site_friendly, all_of(filter_value))
}
}
return(wide_df)
}
##### Create dropdown with variables to plot #####
create_dropdown <- function(df, ns) {
# Get the column names except the dates and column names and geometry
column_names <- sort(colnames(df)[!colnames(df) %in% c("SampleDate", "geometry", "StationCode", "site_friendly")])
print(paste("Creating dropdown with choices:", paste(column_names, collapse=", ")))
selectInput(
inputId = ns("column_selector"),
label = "Select a Variable of Interest",
choices = column_names,
selected = column_names[1]
)
}
##### Create the date picker #####
create_date <- function(df, ns) {
# Get the column names except the dates and column names and geometry
date_column <- df %>%
pull(SampleDate)
print(paste("Creating date range"))
airDatepickerInput(
inputId = ns("date_range"),
label = "Select a Date Range",
range = TRUE,
minDate = min(date_column),
maxDate = max(date_column),
dateFormat = "MM/dd/yyyy",
separator = " - "
)
# dateRangeInput( # This creates a date vector of length 2
# inputId = ns("date_range"),
# label = "Select a Date Range",
# start = NULL,
# end = NULL, # will use current date
# min = min(date_column),
# max = max(date_column),
# format = "mm/dd/yyyy",
# separator = " - "
# )
}
##### Create plot #####
# Modified create_plot function: takes 1 reactive value: the variable (selected
# column)
create_plot <- function(df, units_df, selected_column) { # The input here
# is an already filtered df, so there is a lot we do not have to supply (e.g. date range and stations)
# Check if the variable exists in the dataframe columns - if not, give error
# (and this will stop further execution)
# validate(
# need(selected_column %in% names(df), paste("Sorry! Variable", selected_column,
# "does not exist for the selected station(s) and time frame"))
# )
if (!(selected_column %in% names(df))) {
showNotification(paste("Sorry! Variable", selected_column,
"does not exist for the selected station(s) and time frame"),
type = "warning",
duration = NULL)
return(NULL) # Prevents further code from running if variable doesn't exist
}
print(paste("Updating plot for", selected_column,
"at stations", paste(unique(df$StationCode), collapse = ", "),
"for", min(df$SampleDate), "to", max(df$SampleDate), sep = " "))
#print(paste("Creating plot for", selected_column, "for", length(unique(df$StationCode)), "stations"))
#print(paste("Creating plot for", selected_column, "at", paste(unique(df$StationCode), collapse = ", ")))
# At this point, the dataframe has already been filtered for the correct station
# Initialize the plot
# # Count unique StationCode values because plot_ly wants at least 3
# num_stations <- n_distinct(df$StationCode)
# # Determine colors without named vectors
# color_mapping <- if (num_stations > 2) {
# unname(as.character(df$StationCode)) # Ensure it's a regular vector
# } else if (num_stations == 2) {
# c("royalblue", "darkorange")
# } else {
# "royalblue"
# }
#
# fig <- plot_ly(data = df,
# x = ~ SampleDate,
# y = ~ .data[[selected_column]], # changed this because we're only doing one variable at a time
# type = 'scatter',
# mode = 'lines+markers',
# # The following code is there because plot_ly does not like colors
# # for less than 3 categories. When you plot it on its own, you get a
# # warning, but in Shiny (for some reason), it's an error. So if there
# # are less than 3 categories (stations), you should use split. Who knew.
# color = if (num_stations > 2){
# ~factor(StationCode, labels = df$site_friendly[unique(df$StationCode)])
# } else {
# NULL
# },
# split = if (num_stations <= 2) {
# ~factor(StationCode, labels = df$site_friendly[unique(df$StationCode)])
# } else {
# NULL
# }
# )
# Get the column names except the dates and column names and geometry
#column_names <- sort(colnames(df)[!colnames(df) %in% c("SampleDate", "geometry", "StationCode", "site_friendly")])
# Create a named vector for Y-axis titles
y_axis_titles <- setNames(paste0(units_df$ComponentLong, " (", units_df$Unit, ")"), units_df$ComponentLong)
# Ensure selected_column is not NULL or empty
# if (is.null(selected_column) || selected_column == "") {
# selected_column <- column_names[1]
# }
# Initialize the plot with the x-axis
fig <- plot_ly()
# Loop through each station name and add a trace
unique_stations <- unique(df$StationCode)
unique_friendly <- unique(df$site_friendly)
for (i in seq_along(unique_stations)) {
station_data <- df %>% filter(StationCode == unique_stations[i])
fig <- fig %>%
add_trace(x = station_data$SampleDate, # Define x explicitly for each trace
y = station_data[[selected_column]], # Define y explicitly for each trace
name = paste0(unique_friendly[i], " (", unique_stations[i], ")"),
type = 'scatter',
mode = 'lines+markers',
showlegend = TRUE)
}
station_name <- unique(df$StationCode)
# Customize the layout
fig <- fig %>%
layout(showlegend = TRUE, # by also adding this here, you will also get a legend when plotting one variable
xaxis = list(title = ""),
yaxis = list(title = y_axis_titles[selected_column]),
title = list(text = paste0("Daily ", selected_column),
y = 0.90),
legend = list(orientation = 'h'),
margin = list(t = 60),
plot_bgcolor = '#e5ecf6',
xaxis = list(zerolinecolor = 'darkgrey',
zerolinewidth = 2,
gridcolor = 'azure1'),
yaxis = list(zerolinecolor = 'darkgrey',
zerolinewidth = 2,
gridcolor = 'azure1')) %>%
config(displayModeBar = TRUE) # Make sure the top-right tool bar always shows (not just on hover)
return(fig)
}
HAB_filter <- function(HAB_data, algae_type, site, date_range = NULL){
HAB_data <- HAB_data %>%
filter(type %in% algae_type,
Site %in% site,
!is.na(`cells/L*`)) %>%
mutate(date = dmy(`Sample Date`)) %>%
mutate(Site_type = paste(Site, type, sep = " - ")) %>%
group_by(Site, date, `Sample Time`, type, Site_type) %>%
summarize(total = sum(`cells/L*`))
if(!is.null(date_range)){
HAB_data <- filter(HAB_data, between(date, ymd(date_range[1]), ymd(date_range[2])))
}
return(HAB_data)
}
reef_filter <- function(reef_data, site, date_range = NULL){
reef_data <- reef_data %>%
filter(ReefID %in% site) %>%
mutate(date = dmy(Date)) %>%
group_by(ReefID, date)
if(!is.null(date_range)){
reef_data <- filter(reef_data, between(date, ymd(date_range[1]), ymd(date_range[2])))
}
return(reef_data)
}
#### Create HEX colors to use in html code ####
# Some R color names do not work inside with CSS/html. This function changes the
# name to the HEX code, which does work
get_hex_color <- function(color_name) {
rgb_vals <- grDevices::col2rgb(color_name) / 255
sprintf("#%02X%02X%02X", round(rgb_vals[1] * 255), round(rgb_vals[2] * 255), round(rgb_vals[3] * 255))
}
#### Make marker icons #####
blue_icon <- makeIcon(
iconUrl = "https://raw.githubusercontent.com/pointhi/leaflet-color-markers/master/img/marker-icon-blue.png",
iconWidth = 25, iconHeight = 41,
iconAnchorX = 12, iconAnchorY = 41
)
red_icon <- makeIcon(
iconUrl = "https://raw.githubusercontent.com/pointhi/leaflet-color-markers/master/img/marker-icon-red.png",
iconWidth = 25, iconHeight = 41,
iconAnchorX = 12, iconAnchorY = 41
)
redIcon <- makeIcon(
shadowAnchorX = 12, shadowAnchorY = 41,
shadowWidth = 41, shadowHeight = 41,
shadowUrl = "https://cdnjs.cloudflare.com/ajax/libs/leaflet/0.7.7/images/marker-shadow.png",
iconAnchorX = 12, iconAnchorY = 41,
iconWidth = 25, iconHeight = 41,
iconUrl = "https://raw.githubusercontent.com/pointhi/leaflet-color-markers/master/img/marker-icon-red.png")