-
Notifications
You must be signed in to change notification settings - Fork 0
/
draft-cl-spring-generalized-srv6-for-cmpr-02.xml
886 lines (672 loc) · 34.2 KB
/
draft-cl-spring-generalized-srv6-for-cmpr-02.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE rfc SYSTEM "rfc2629.dtd">
<?rfc toc="yes"?>
<?rfc tocompact="yes"?>
<?rfc tocdepth="3"?>
<?rfc tocindent="yes"?>
<?rfc symrefs="yes"?>
<?rfc sortrefs="no"?>
<?rfc comments="yes"?>
<?rfc inline="yes"?>
<?rfc compact="yes"?>
<?rfc subcompact="no"?>
<rfc category="std" docName="draft-cl-spring-generalized-srv6-for-cmpr-02"
ipr="trust200902" updates="">
<front>
<title abbrev="G-SRv6 for Cmpr">Generalized SRv6 Network Programming for
SRv6 Compression</title>
<author fullname="Weiqiang Cheng (editor)" initials="W." surname="Cheng">
<organization>China Mobile</organization>
<address>
<postal>
<street>No.32 Xuanwumen west street</street>
<city>Beijing</city>
<region/>
<code>100053</code>
<country>China</country>
</postal>
<phone/>
<facsimile/>
<email>[email protected]</email>
<uri/>
</address>
</author>
<author fullname="Zhenbin Li" initials="Z." surname="Li">
<organization>Huawei Technologies</organization>
<address>
<postal>
<street>Huawei Campus, No. 156 Beiqing Rd.</street>
<city>Beijing</city>
<region/>
<code>100095</code>
<country>China</country>
</postal>
<phone/>
<facsimile/>
<email>[email protected]</email>
<uri/>
</address>
</author>
<author fullname="Cheng Li (editor)" initials="C." surname="Li">
<organization>Huawei Technologies</organization>
<address>
<postal>
<street>Huawei Campus, No. 156 Beiqing Rd.</street>
<city>Beijing</city>
<region/>
<code>100095</code>
<country>China</country>
</postal>
<phone/>
<facsimile/>
<email>[email protected]</email>
<uri/>
</address>
</author>
<author fullname="Francois Clad" initials="F." surname="Clad">
<organization>Cisco Systems, Inc</organization>
<address>
<postal>
<street/>
<city/>
<region/>
<code/>
<country>France</country>
</postal>
<phone/>
<facsimile/>
<email>[email protected]</email>
<uri/>
</address>
</author>
<author fullname="Aihua Liu" initials="A." surname="Liu">
<organization>ZTE Corporation</organization>
<address>
<postal>
<street/>
<city>Shenzhen</city>
<region/>
<code/>
<country>China</country>
</postal>
<phone/>
<facsimile/>
<email>[email protected]</email>
<uri/>
</address>
</author>
<author fullname="Chongfeng Xie" initials="C." surname="Xie">
<organization>China Telecom</organization>
<address>
<postal>
<street>Technology Innovation park, Changping District</street>
<city>Beijing</city>
<region/>
<code/>
<country>China</country>
</postal>
<phone/>
<facsimile/>
<email>[email protected]</email>
<uri/>
</address>
</author>
<author fullname="Yisong Liu" initials="Y." surname="Liu">
<organization>China Mobile</organization>
<address>
<postal>
<street>No.32 Xuanwumen west street</street>
<city>Beijing</city>
<region/>
<code/>
<country/>
</postal>
<phone/>
<facsimile/>
<email>[email protected]</email>
<uri/>
</address>
</author>
<author fullname="Shay Zadok" initials="S." surname="Zadok">
<organization>Broadcom</organization>
<address>
<postal>
<street/>
<city>Israel</city>
<region/>
<code/>
<country/>
</postal>
<phone/>
<facsimile/>
<email>[email protected]</email>
<uri/>
</address>
</author>
<date day="16" month="November" year="2020"/>
<area>Routing Area</area>
<workgroup>SPRING Working Group</workgroup>
<abstract>
<t>This document proposes Generalized Segment Routing over IPv6 (G-SRv6)
Networking Programming for SRv6 compression.</t>
<t>G-SRv6 can reduce the overhead of SRv6 by encoding the Generalized
SIDs(G-SID) in SID list, and it also supports to program SRv6 SIDs and
G-SIDs in a single SRH to support incremental deployment and smooth
upgrade.</t>
<t>G-SRv6 is fully compatible with SRv6 with no modification of SRH, no
new address consumption, no new route creation, and even no modification
of control plane.</t>
<t>G-SRv6 for Compression is designed based on the Compressed SRv6
Segment List Encoding in SRH <xref
target="I-D.filsfilscheng-spring-srv6-srh-comp-sl-enc"/> framework.</t>
</abstract>
</front>
<middle>
<section title="Introduction">
<t>Segment routing (SR) <xref target="RFC8402"/> is a source routing
paradigm that explicitly indicates the forwarding path for packets at
the ingress node by inserting an ordered list of instructions, called
segments.</t>
<t>When segment routing is deployed on the IPv6 data plane, it is called
SRv6 <xref target="RFC8754"/>. For support of SR, a new routing header
called Segment Routing Header (SRH), which contains a list of SIDs and
other information, has been defined in <xref target="RFC8754"/>. In use
cases like Traffic Engineering, an ordered SID List with multiple SIDs
is inserted into the SRH to steer packets along an explicit path.</t>
<t>However, the size of SIDs (16 bytes per SID) in SRH proposes
challenges for packet processing and payload efficiency <xref
target="I-D.cheng-spring-shorter-srv6-sid-requirement"/>. In order to
solve this problem, this document proposes Generalized Segment Routing
over IPv6 (G-SRv6) Networking Programming for SRv6 compression.</t>
<t>G-SRv6 supports to encode multiple types of Segments in an SRH,
called Generalized SRH (G-SRH). In SRv6 Compression, the G-SRH can carry
multiple SRv6 SID and G-SID(Generalized Segment Identifier) containers
in the SID list. A G-SID container may include an SRv6 SID or multiple
G-SIDs and optional padding. A G-SID can be a 32-bits value of the
original SRv6 SID, which contains the node ID and function ID. By
carrying G-SIDs instead of 128 bits SRv6 SID, the problem of SRv6 header
size can be solved, and the solution is compatible with SRv6.</t>
</section>
<section title="Terminology">
<t>This document makes use of the terms defined in <xref
target="RFC8754"/>, <xref target="RFC8402"/> and <xref
target="RFC8200"/>, and the reader is assumed to be familiar with that
terminology. This document introduces the following terms:</t>
<t>Compressible SRv6 SID: It is the 128-bit SRv6 SID whose format can be
compressed. It is composed by Common Prefix and Generalized Segment
Identifier (G-SID) and optional arguments and padding.</t>
<t>Common Prefix: It is the same prefix shared by multiple SIDs.</t>
<t>G-SRv6: Generalized SRv6 Network Programming</t>
<t>G-SRH: Generalized Segment Routing Header. It keeps the same format
and code point with original SRH, which can carry multiple G-SIDs and
original SIDs.</t>
<t>G-SID: Generalized Segment Identifier.It is a Compressed SID(C-SID)
<xref target="I-D.filsfilscheng-spring-srv6-srh-comp-sl-enc"/>.</t>
<t>G-SID Container: Generalized Segment Identifier Container.It is a
C-SID container <xref
target="I-D.filsfilscheng-spring-srv6-srh-comp-sl-enc"/>.</t>
<section title="Requirements Language">
<t>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only
when, they appear in all capitals, as shown here.</t>
</section>
</section>
<section title="Concepts of G-SRv6">
<t>This section describes the concepts of G-SRv6.</t>
<section title="G-SID">
<t>In an SRv6 domain, the SIDs are allocated from an address block,
called SID space. Therefore, the SIDs allocated from the same SID
space share the common prefix. Also, if the length of the SID is less
than 128 bits, then padding is required. In an SID List, the common
prefix and padding are redundant. Reducing the redundant information
can reduce the overhead of SRv6.</t>
<t>This document defines a Generalized SID (G-SID) to carry the
different part of the original SRv6 SID in the SRH to reduce the size
of the SRH. The G-SID can be a 32-bits value following the common
prefix in the original SRv6 SID. An SRv6 SID with this format is
called compressible SRv6 SID. The format of a compressible SRv6 SID
with 32-bits G-SID is shown in Figure 1.</t>
<t><figure>
<artwork><![CDATA[
0 Variable Length 32 bits 128 bits
+--------------------------------------------------------------+
| Common Prefix | G-SID | Args/padding |
+--------------------------------------------------------------+
|<-------- Locator ----------------->|
Figure 1. 32 bits G-SID in SRv6 SID
]]></artwork>
</figure></t>
<t>In order to indicate the format of the SRv6 SID is compressible,
control plane extension may be considered. This is out of scope of
this document, and can be described in other documents.</t>
</section>
<section title="G-SID Container">
<t>In order to align with 128 bits, a 128 bit G-SID Container is
defined. A G-SID Container is a 128 bits value, and it may contain
different type of SIDs:</t>
<t><list style="symbols">
<t>an SRv6 SID: A G-SID Container contains a single SRv6 SID.</t>
<t>A Micro SID Carrier: A G-SID Container contains a Micro SID
carrier <xref
target="I-D.filsfils-spring-net-pgm-extension-srv6-usid"/>.</t>
<t>Multiple G-SIDs: A G-SID Container contains multiple G-SIDs and
optional padding. When G-SID is a 32-bits value, a G-SID Container
can consist of 4 G-SIDs. If the length of G-SIDs in a G-SID
Container is less than 128 bits, then padding is required.</t>
</list></t>
<t><figure align="center">
<artwork><![CDATA[ 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-SID 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-SID 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-SID 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-SID 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
(a)
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-SID 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-SID 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
(b)
Figure 2. G-SID Container for Compression
]]></artwork>
</figure></t>
</section>
<section title="G-SID Index">
<t>In order to locate the G-SID within the G-SID Container, this
section defines Generalized SID Index (SI) to indicate the location of
the G-SID within the current G-SID Container.</t>
<t>SI is a location argument of the G-SID, which is the least bits in
the argument part. When G-SID is a 32 bits value, the SI is the least
2 bits in Argument.</t>
<t><figure>
<artwork><![CDATA[
0 Variable Length 32 bits 128 bits
+--------------------------------------------------------------+
| Common Prefix | G-SID |SI| Padding |
+--------------------------------------------------------------+
Figure 4. SI in the IPv6 DA
]]></artwork>
</figure></t>
</section>
<section title="COC Flavor">
<t>In order to indicate the SRv6 compression processing, updating the
next 32-bits G-SID to the IPv6 DA, this section defines COC(Continue
of Compression) Flavor.</t>
<t>When a node receives an SID with COC Flavor, it indicates to update
the G-SID part in IPv6 DA with the next 32 bits G-SID.</t>
<t>When a node receives an SID without COC Flavor, the node processes
the packet as a normal SRv6 packet <xref
target="I-D.ietf-spring-srv6-network-programming"/>, for example,
update the IPv6 DA with the next 128 bits SID if SL >0.</t>
<t>Therefore, if the behavior of the last G-SID in the G-SID list has
no COC Flavor, then the next 128 bits SID will be updated to the DA,
so it indicates the end of the compression sub-path.</t>
<t>When COC Flavor applies to END, END.X and END.T, the SIDs can be
advertised via the IS-IS <xref
target="I-D.ietf-lsr-isis-srv6-extensions"/>, and the SRv6 SID
Structure Sub-Sub-TLV MUST be carried to indicate the format of the
SRv6 SID. The Locator.Block length indicates the length of the common
prefix, and the G-SID is the following 32-bits value after the Block,
which contains the Node ID and Function ID.</t>
</section>
</section>
<section title="G-SRH">
<t>G-SRH supports to encode different types of segment in a single SRH
without modifying the encapsulation format of SRH.</t>
<t>When an SRv6 path travels normal SRv6 nodes and compressed SRv6
nodes, the SRv6 SID and G-SIDs can be encoded in a single G-SRH.</t>
<t>For easier understanding, this document assumes that the Compressible
SRv6 SID consists of 64 bits common prefix and 32 bits G-SID. The
encoding can be shown as follows.<figure align="center">
<artwork><![CDATA[ 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len | Routing Type | Segments Left|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Last Entry | Flag | Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Other G-SID Container |
. ... .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
| Optional Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-SID 0 | G-SID Container 0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. ... . ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-SID 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
| G-SID 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-SID 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-SID 2 | G-SID Container j
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-SID 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
| Common Prefix |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ G-SID Container k
| G-SID 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Generalized Segment List[n] (128 bits SRv6 SID) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Optional Type Length Value objects (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3. G-SRH for SRv6 Compression
]]></artwork>
</figure></t>
<t>Where:</t>
<t><list style="symbols">
<t>Common Prefix: the common prefix shared by the Compressible SRv6
SIDs in the current compression sub-path. Usually, it is the prefix
of the SID space, called Locator Block in control plane <xref
target="I-D.ietf-spring-srv6-network-programming"/>. Operators are
free to configure the length and the value of the common prefix
based on the address planning of their networking.</t>
<t>G-SID: 32-bits Generalized SID.</t>
<t>Padding: Must be zero. When the length of G-SIDs within the G-SID
Container is less than 128 bits, then padding is needed.</t>
</list></t>
</section>
<section title="Packet Processing">
<t>This section describes the pseudo code of COC Flavor, and it replaces
the S13 and S14 of End, End.X, and End.T's pseudo code <xref
target="I-D.ietf-spring-srv6-network-programming"/>. The pseudo code is
shown below.</t>
<t>When N receives a packet whose IPv6 DA is S and S is a local SID with
COC Flavor, N does:<figure>
<artwork><![CDATA[
1. If (DA.SI != 0) { //ref1
2. Decrement DA.SI by 1.
3. } Else {
4. Decrement Segments Left by 1.
5. Set DA.SI to 3 in the IPv6 Destination Address
6. }
7. Copy Segment List[Segments Left][DA.SI] into the bits //ref2
[B..B+31] of the IPv6 Destination Address.
]]></artwork>
</figure></t>
<t><list style="symbols">
<t>Ref1: an SID with COC flavor indicates the SRv6 compression
processing that the node needs to update the next 32 bits G-SID to
the IPv6 DA.<list style="symbols">
<t>When the SI is greater than 0, the next G-SID is the next
G-SID in the current G-SID Container.</t>
<t>Otherwise, the next G-SID is the first G-SID in the next
G-SID Container.</t>
</list></t>
<t>Ref2: B is the length of the Locator Block <xref
target="I-D.ietf-spring-srv6-network-programming"/>.</t>
</list></t>
<t>An SID without COC Flavor will be processed following the SRv6
processing. The node will update the next 128 bit SID to the IPv6 DA if
the SL > 0.</t>
</section>
<section title="Illustration">
<t>This section describes a simple example of G-SRv6 for
compression.</t>
<t>The reference topology is shown below.</t>
<t><figure>
<artwork><![CDATA[ *--------------------*
* SRv6 Domain *
* *
Tenant10 CE1--0-1-2-3-4-5-6-7-8-9-10--CE2 Tenant10
* *
*--------------------*
Figure 5. Reference topology
]]></artwork>
</figure></t>
<t>Nodes 0 - 10 are G-SRv6 enabled nodes within the SRv6 domain, and
node 0 is the ingress node of the G-SRv6 path while the node 10 is the
egress node.</t>
<t>Nodes CE1 and CE2 are tenants of VPN 10, and they are outside of the
SRv6 domain.</t>
<t>In order to ease the reading of the example, this section introduces
a simplified SID allocation schema.</t>
<t><list style="symbols">
<t>2001:db8::/64 is dedicated to the internal SRv6 SID space, which
is the common prefix for the SIDs as well.</t>
<t>Node k has 2001:db8:0:0:k::/80 for its local SID space. Its SIDs
will be explicitly allocated from that block.</t>
<t>2001:db8:0:0:k:1:: represents the End.X SID with COC allocated by
node K, and it is associated with interface N of node K. For
instance, 2001:db8:0:0:1:1:: represents the End.X with COC flavor
allocated by node 1.</t>
<t>2001:db8:0:0:k:2:: represents the End.X SID without COC allocated
by node K, and it is associated with interface N of node K. For
instance, 2001:db8:0:0:1:2:: represents the End.X without COC flavor
allocated by node 1.</t>
<t>2001:db8:0:0:10:10:: is an END.DT4 SID initiated by node 10,
which is associated with the VRF10.</t>
</list></t>
<t>Therefore, the SID 2001:db8:0:0:1:1::, 2001:db8:0:0:2:1::,
2001:db8:0:0:3:1::, 2001:db8:0:0:4:1::, 2001:db8:0:0:5:1::,
2001:db8:0:0:6:1::, 2001:db8:0:0:7:1::, 2001:db8:0:0:8:1:: are SRv6
End.X SIDs with COC Flavor, and 2001:db8:0:0:9:2:: is a Compressible
SRv6 End.X SID.</t>
<t>The SID list [2001:db8:0:0:1:1::, 2001:db8:0:0:2:1::,
2001:db8:0:0:3:1::, 2001:db8:0:0:4:1::, 2001:db8:0:0:5:1::,
2001:db8:0:0:6:1::, 2001:db8:0:0:7:1::, 2001:db8:0:0:8:1::,
2001:db8:0:0:9:2::, 2001:db8:0:0:10:10::] is calculated for a strict TE
path from Node 1 to Node 10 for the VPN traffic of tenant 10.</t>
<t>In G-SRv6, the SID list can be encoded as [2:1, 3:1, 4:1, 5:1, 6:1,
7:1, 8:1, 9:2, 2001:db8:0:0:10:10::] in reduced mode. The G-SID
Container encoding is shown below.</t>
<t><figure align="center">
<artwork><![CDATA[ 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ----
| |
| 2001:db8:0:0:10:10:: | G-SID Container 0
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ----
| 9:2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 8:1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ G-SID Container 1
| 7:1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 6:1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ----
| 5:1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4:1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ G-SID Container 2
| 3:1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 2:1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ----
Figure 6. G-SID Container Encoding for G-SRv6
]]></artwork>
</figure></t>
<t>The packets forwarding procedures:</t>
<t><list style="symbols">
<t>Node 0 sends the SRv6 packet with G-SRH to the node 1.The SL is
3. The Active SID in IPv6 DA is 2001:db8:0:0:1:1::.</t>
<t>When node 1 receives the packet, the IPv6 DA is
2001:db8:0:0:1:1::, which is a Local End.X with COC Flavor SID. The
SRH.SL is 3, and DA.SI is 0. The node processes the packet: SL =
SL-1,DA.SI =3, pointing to the next G-SID 2:1, and updates
SRH[SL=2][DA.SI=3] to the IPv6 DA[CP:CP+31], where CP is the length
of the common prefix. The packet is forwarded with the new IPv6 DA
2001:db8:0:0:2:1:C::, to the node 2.</t>
<t>When node 2 receives the packet, the IPv6 DA is
2001:db8:0:0:2:1:C::, which is a Local End.X with COC Flavor SID.
The SRH.SL is 2, and DA.SI is 3. The node processes the packet:
DA.SI --, pointing to the next G-SID 3:1, and updates
SRH[SL=2][DA.SI=2] to the IPv6 DA[CP:CP+31]. The packet is forwarded
with the new IPv6 DA 2001:db8:0:0:3:1:8::, to the node 3.</t>
<t>Similar to node 1 and 2, the node 3,4,5,6,7,8 process the packet
and forward with the new IPv6 DA.</t>
<t>When node 9 receives the packet, the IPv6 DA is
2001:db8:0:0:9:2::, which is a Local End.X SID. The SRH.SL is 1. The
node updates the next SID 2001:db8:0:0:10:10:: to the IPv6 DA and
forwards the packet to the node 10.</t>
<t>Node 10 receives the packet, and the IPv6 DA is an VPN SID
allocated by itself, the node processes the SRv6 VPN SID.</t>
</list></t>
<t>This illustration shows that 70 % overhead of SID list is removed in
G-SRv6(10 x 16 Bytes to 3 x 16 Bytes), also, it shows the capabilities
of encoding G-SIDs and SRv6 SIDs in a single G-SRH.</t>
<t/>
</section>
<section title="Benefits">
<t/>
<t><list style="symbols">
<t>G-SRv6 is fully compatible with SRv6<list style="symbols">
<t>No SRH encapsulation modification.</t>
<t>No new address consumption: Compressible SRv6 SIDs can be
allocated from the Locator allocated to the node.</t>
<t>No new route advertisements: Compressible SRv6 SIDs can share
the same locator with the normal SRv6 SID.</t>
<t>No security policy modification: when reusing the Locator
with SRv6 SIDs, no security policy need to be updated.</t>
<t>No control plane modification: Controller can install the SR
policy with 128-bits G-SID Containers, and the ingress treats
the G-SID Container as an opaque 128-bits SID without
understanding the structure of it. G-SRv6 capable nodes
understand the COC flavor behaviors, while Compression disable
SRv6 nodes are unaware of Compression.</t>
</list></t>
<t>G-SRv6 reduces the SRv6 encapsulation size.<list style="symbols">
<t>128 bits to 32 bits, up to 75 % overhead is reduced. More
overhead is reduced when the G-SID is a 16-bits value.</t>
</list></t>
<t>G-SRv6 has efficient address consumption and easy to deploy<list
style="symbols">
<t>Operators are free to allocate an SID space from their
address space.</t>
<t>No affect of networking(i.e. routes and ACL security
policies) by using the existing Locator to allocate compressible
SRv6 SIDs.</t>
</list></t>
<t>G-SRv6 is hardware friendly<list style="symbols">
<t>Same SRv6 processing flow with a new IPv6 DA update
method</t>
<t>Leverages the mature hardware capabilities (DA update, DA
longest match)</t>
<t>Avoids extra lookup in indexed mapping table</t>
</list></t>
<t>G-SRv6 supports incremental deployments, which can be deployed on
demand.</t>
</list></t>
</section>
<section title="Protocol Extensions Requirements">
<t>This section describes the protocol extension requirements.</t>
<section title="Data Plane">
<t>REQ1-01: An SRv6 compression path can be represented as a G-SID
Container list consists of a compressible SRv6 SID and G-SID
Containers.</t>
<t>REQ1-02: A G-SID Container consists of at most 4 (32-bits) G-SIDs,
if the number of G-SID is less than 4, then padding is required to
align with 128 bits.</t>
<t>REQ1-03: If the first Compressible SRv6 SID is copied to the IPv6
DA, then following G-SIDs should be updated to the IPv6 DA by the
nodes along the SRv6 compression sub-path accordingly.</t>
<t>REQ1-04: The last G-SID in the G-SID Container for the SRv6
compression sub-path is the a G-SID without COC flavor.</t>
<t>REQ1-05: When process the G-SID with COC flavor in the IPv6 DA, the
next G-SID is updated to the IPv6 DA.</t>
</section>
<section title="Control Plane">
<t>REQ1-11: ISIS/OSPF/BGP-LS/PCEP extensions for advertising the
capabilities of supporting G-SRv6 for SRv6 compression.</t>
<t>REQ1-12: ISIS/OSPF/BGP-LS/BGP extensions for advertising
Compressible SRv6 SIDs.</t>
<t>REQ1-13: ISIS/OSPF/BGP-LS/BGP extensions for advertising the
Continue-of-compression(COC) flavor SID.</t>
<t>REQ1-21: BGP SR Policy extensions for programming a G-SRv6 path
combining with Compressible SRv6 SIDs and SRv6 SIDs.</t>
<t>REQ1-31: PCEP SR Policy extensions for programming a G-SRv6 path
combining with G-SIDs and SRv6 SIDs.</t>
<t>REQ1-32: PCEP extensions for programming a G-SRv6 path combining
with G-SIDs and SRv6 SIDs.</t>
</section>
</section>
<section anchor="IANA" title="IANA Considerations">
<t>This document requests IANA to allocate the following codepoints for
COC flavor behaviors within the "SRv6 Endpoint Behaviors" sub-registry
under the top-level "Segment Routing Parameters" registry.</t>
<t><figure>
<artwork><![CDATA[
+-------+--------+----------------------------+-----------+
| Value | Hex | Endpoint behavior | Reference |
+-------+--------+----------------------------+-----------+
| 101 | 0x0065 | End with COC | [This.ID] |
| 102 | 0x0066 | End with PSP&COC | [This.ID] |
| 104 | 0x0068 | End with PSP&USP&COC | [This.ID] |
| 105 | 0x0069 | End.X with COC | [This.ID] |
| 106 | 0x006A | End.X with PSP&COC | [This.ID] |
| 108 | 0x006C | End.X with PSP&USP&COC | [This.ID] |
| 109 | 0x006D | End.T with COC | [This.ID] |
| 110 | 0x006E | End.T with PSP&COC | [This.ID] |
| 112 | 0x0070 | End.T with PSP&USP&COC | [This.ID] |
| 130 | 0x0082 | End with PSP&USD&COC | [This.ID] |
| 131 | 0x0083 | End with PSP&USP&USD&COC | [This.ID] |
| 133 | 0x0085 | End.X with PSP&USD&COC | [This.ID] |
| 135 | 0x0087 | End.X with PSP&USP&USD&COC | [This.ID] |
| 137 | 0x0089 | End.T with PSP&USD&COC | [This.ID] |
| 139 | 0x008B | End.T with PSP&USP&USD&COC | [This.ID] |
+-------+--------+----------------------------+-----------+
Table 1: IETF - SRv6 Endpoint Behaviors
]]></artwork>
</figure></t>
<t/>
</section>
<section anchor="Security" title="Security Considerations">
<t>The security considerations described in <xref target="RFC8754"/>,
and <xref target="RFC8402"/> are applicable to this specification. No
additional security measure is required.</t>
</section>
<section title="Contributors">
<t>TBD</t>
</section>
<section title="Acknowledgements ">
<t>TBD</t>
<t/>
</section>
</middle>
<back>
<references title="Normative References">
<?rfc include="reference.RFC.2119"?>
<?rfc include='reference.RFC.8174'?>
<?rfc include='reference.RFC.8200'?>
<?rfc include='reference.RFC.8754'?>
<?rfc include='reference.RFC.8402'?>
<?rfc include='reference.I-D.ietf-spring-srv6-network-programming'?>
<?rfc include='reference.I-D.filsfilscheng-spring-srv6-srh-comp-sl-enc'?>
<?rfc ?>
</references>
<references title="Informative References">
<?rfc include='reference.I-D.filsfils-spring-net-pgm-extension-srv6-usid'?>
<?rfc include='reference.I-D.cheng-spring-shorter-srv6-sid-requirement'
?>
<?rfc include='reference.I-D.ietf-lsr-isis-srv6-extensions'?>
<?rfc ?>
<?rfc ?>
</references>
</back>
</rfc>