-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathAvastStyleConv.py
executable file
·101 lines (77 loc) · 3.34 KB
/
AvastStyleConv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from collections import deque
from collections import OrderedDict
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from LowMemConv import LowMemConvBase
def getParams():
#Format for this is to make it work easily with Optuna in an automated fashion.
#variable name -> tuple(sampling function, dict(sampling_args) )
params = {
'channels' : ("suggest_int", {'name':'channels', 'low':16, 'high':64}),
'stride' : ("suggest_int", {'name':'stride', 'low':2, 'high':4}),
'window_size' : ("suggest_int", {'name':'window_size', 'low':16, 'high':64}),
}
return OrderedDict(sorted(params.items(), key=lambda t: t[0]))
def initModel(**kwargs):
new_args = {}
for x in getParams():
if x in kwargs:
new_args[x] = kwargs[x]
return AvastConv(**new_args)
def vec_bin_array(arr, m=8):
"""
Arguments:
arr: Numpy array of positive integers
m: Number of bits of each integer to retain
Returns a copy of arr with every element replaced with a bit vector.
Bits encoded as int8's.
"""
to_str_func = np.vectorize(lambda x: np.binary_repr(x).zfill(m))
strs = to_str_func(arr)
ret = np.zeros(list(arr.shape) + [m], dtype=np.int8)
for bit_ix in range(0, m):
fetch_bit_func = np.vectorize(lambda x: x[bit_ix] == '1')
ret[...,bit_ix] = fetch_bit_func(strs).astype(np.int8)
return (ret*2-1).astype(np.float32)/16
class AvastConv(LowMemConvBase):
def __init__(self, out_size=2, channels=48, window_size=32, stride=4):
super(AvastConv, self).__init__()
self.embd = nn.Embedding(257, embd_size, padding_idx=0)
for i in range(1, 257):
self.embd.weight.data[i,:] = torch.tensor(vec_bin_array(np.asarray([i])))
for param in self.embd.parameters():
param.requires_grad = False
self.conv_1 = nn.Conv1d(8, channels, window_size, stride=stride, bias=True)
self.conv_2 = nn.Conv1d(channels, channels*2, window_size, stride=stride, bias=True)
self.pool = nn.MaxPool1d(4)
self.conv_3 = nn.Conv1d(channels*2, channels*3, window_size//2, stride=stride*2, bias=True)
self.conv_4 = nn.Conv1d(channels*3, channels*4, window_size//2, stride=stride*2, bias=True)
self.fc_1 = nn.Linear(channels*4, channels*4)
self.fc_2 = nn.Linear(channels*4, channels*3)
self.fc_3 = nn.Linear(channels*3, channels*2)
self.fc_4 = nn.Linear(channels*2, out_size)
def processRange(self, x):
#Fixed embedding
# cur_device = next(self.conv_1.parameters()).device
# x = torch.tensor(vec_bin_array(x.cpu().data.numpy()))
# print("chunk")
with torch.no_grad():
x = self.embd(x)
x = torch.transpose(x,-1,-2)
x = F.relu(self.conv_1(x))
x = F.relu(self.conv_2(x))
x = self.pool(x)
x = F.relu(self.conv_3(x))
x = F.relu(self.conv_4(x))
return x
def forward(self, x):
post_conv = x = self.seq2fix(x)
x = F.selu(self.fc_1(x))
x = F.selu(self.fc_2(x))
penult = x = F.selu(self.fc_3(x))
x = self.fc_4(x)
return x, penult, post_conv