-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_classifier.py
330 lines (276 loc) · 14.2 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
"""
Main classification pipeline for semantic pointers.
"""
from __future__ import print_function, division
__author__ = "Ashwinkumar Ganesan"
__email__ = "[email protected]"
import pprint as pp
import numpy as np
import time
import os
import copy
import argparse
from tqdm import tqdm
from tabulate import tabulate
import pandas as pd
# Torch functions.
import torch
import torch.optim as optim
from torch.utils import data
from torch.optim import lr_scheduler
from lib.data import SPNDataset, MultiLabelDataset, MultiLabelSparseDataset
from lib.data import SPNSparseDataset, Sampler
from lib.model import MultiLabelMLP, SemanticPointerNetwork
from lib.model import baseline_train, baseline_test, spp_train, spp_test
from lib.metrics import plot_tr_stats, compute_inv_propensity, display_metrics, display_agg_results
from lib.utils import print_memory_profile, ExperimentTime, print_command_arguments
# Commandline Arguments.
parser = argparse.ArgumentParser(description='Extreme Multi-label Classification.')
parser.add_argument('--name', type=str, default='test', help='A unique experiment name.')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
help='input batch size for testing (default: 250)')
parser.add_argument('--epochs', type=int, default=25, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--th', type=float, default=0.0, help='Theshold for label inference.')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=100, metavar='S',
help='random seed (default: 100)')
parser.add_argument('--topk', type=int, default=5, metavar='S',
help='Retreive top k labels (Default: 5).')
parser.add_argument('-a', type=float, default=0.55,
help='Inverse propensity value A (Default: 0.55).')
parser.add_argument('-b', type=float, default=1.5,
help='Inverse propensity value A (Default: 1.5).')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save', type=str, default='.', help='Directory to save model and results.')
parser.add_argument('--data-file', type=str, default="None", help='Location of the data CSV file.')
parser.add_argument('--tr-split', type=str, help='Get the training split for dataset.')
parser.add_argument('--te-split', type=str, help='Get the test split for dataset.')
parser.add_argument('--test', action='store_true', default=False,
help='Perform tests on pretrained model.')
parser.add_argument('--reduce-dims', action='store_true', default=False,
help='Reduce dimensions of the features.')
parser.add_argument('--debug', action='store_true', default=False,
help='Print debug statements for verification.')
# SPN specific arguments.
parser.add_argument('--baseline', action='store_true', default=False,
help='Use Baseline Network.')
parser.add_argument('--spn-dim', type=int, default=400, metavar='S',
help='Label vector dimensions (Default: 400)')
parser.add_argument('--no-grad', action='store_true', default=False,
help='Update Label vectors.')
parser.add_argument('--without-negative', action='store_true', default=False,
help='disable negative loss.')
parser.add_argument('--load-vec', type=str, default=None, help='Location of pretrained vectors.')
# Start.
args = parser.parse_args()
print_command_arguments(args)
# Locations.
model_path = args.save + "/" + args.name + ".pth"
# Begin.
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 16, 'pin_memory': True, 'drop_last': True} if use_cuda else {'drop_last': True, 'num_workers': 8}
# Device.
print("Device Used: {}".format(device))
# Create the dataset.
if args.data_file != "None":
if args.baseline is True:
eld = MultiLabelDataset(args.data_file,
dimension_reduction=args.reduce_dims)
else:
eld = SPNDataset(args.data_file,
dimension_reduction=args.reduce_dims)
max_pred_size = eld.get_max_size()
num_classes = eld.num_labels # Number of labels in the datasets.
num_features = len(eld.features[0])
# Create the sampler object that contains the splits for training and test.
sampler_idx = 0 # Idx of the sampler selected for testing.
eld_sampler = Sampler(args.tr_split, args.te_split)
train_sampler, validation_sampler, test_sampler = eld_sampler[sampler_idx]
# Dataloaders for training, validation and testing.
train_loader = torch.utils.data.DataLoader(eld, batch_size=args.batch_size,
sampler=train_sampler,
**kwargs)
val_loader = torch.utils.data.DataLoader(eld, batch_size=args.test_batch_size,
sampler=validation_sampler,
**kwargs)
test_loader = torch.utils.data.DataLoader(eld, batch_size=args.test_batch_size,
sampler=test_sampler,
**kwargs)
else: # When a single train split are available.
if args.baseline is True:
eld_train = MultiLabelSparseDataset(args.tr_split)
eld_test = MultiLabelSparseDataset(args.te_split)
else:
eld_train = SPNSparseDataset(args.tr_split)
eld_test = SPNSparseDataset(args.te_split)
max_pred_size = eld_train.get_max_size()
num_classes = eld_train.num_labels # Number of labels in the datasets.
num_features = eld_train.features.shape[1]
# Split the training data into training and validation.
n_train = int(len(eld_train) * 0.9)
n_val = len(eld_train) - n_train
train_dataset, val_dataset = data.random_split(eld_train, (n_train, n_val))
print("Training dataset: {}, Validation dataset: {}".format(len(train_dataset),
len(val_dataset)))
# Dataloaders for training, validation and testing.
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.test_batch_size,
shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(eld_test, batch_size=args.test_batch_size,
shuffle=True, **kwargs)
# Compute propensity based on training labels.
# NOTE: http://manikvarma.org/downloads/XC/XMLRepository.html#Jain16
# http://manikvarma.org/pubs/jain16.pdf
if args.data_file != "None":
if args.baseline is True:
labels = train_loader.dataset.labels[eld_sampler.train_idx[sampler_idx]]
else:
labels = train_loader.dataset.get_one_hot(eld_sampler.train_idx[sampler_idx])
inv_propen = compute_inv_propensity(labels, A=args.a, B=args.b)
if args.debug is True:
pp.pprint("--------Sample----------")
pp.pprint(eld.features[10].shape)
pp.pprint(eld.labels[10].shape)
pp.pprint("--------Sample----------")
else:
if args.baseline is True:
labels = train_loader.dataset.dataset.labels
else:
labels = train_loader.dataset.dataset.splabels
inv_propen = compute_inv_propensity(labels, A=args.a, B=args.b)
if args.debug is True:
pp.pprint("--------Sample----------")
pp.pprint(eld_train.features[10].shape)
pp.pprint(eld_train.labels[10].shape)
pp.pprint("--------Sample----------")
if args.test is not True:
# Start Experiment.
print("Let's use", torch.cuda.device_count(), "GPUs!")
if args.baseline is True:
if args.debug:
print("Create the baseline model...")
model = MultiLabelMLP(num_features, num_classes, debug=args.debug).to(device)
else:
if args.debug:
print("Create the semantic pointer network...")
model = SemanticPointerNetwork(num_features, num_classes, args.spn_dim,
max_pred_size=max_pred_size,
no_grad=args.no_grad, load_vec=args.load_vec,
debug=args.debug).to(device)
# Create embedding layer for CPU.
model.create_label_embedding()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = lr_scheduler.StepLR(optimizer, step_size=1, gamma=args.gamma)
# Training Stats.
# Optimize model on validation data.
# Strategy: Save the model with the least validation loss and load for inference during tests.
tr_stats = []; spoch = 0
min_val_loss = float('inf')
for epoch in range(1, args.epochs + 1):
print("Training Epochs: {}".format(epoch))
if args.baseline is True:
tr_loss = baseline_train(args.log_interval, model, device,
train_loader, optimizer, epoch)
val_loss, pr, rec, f1 = baseline_test(model, device, val_loader)
else:
tr_loss, _, _ = spp_train(args.log_interval, model, device,
train_loader, optimizer, epoch, without_negative=args.without_negative)
val_loss, pr, rec, f1 = spp_test(model, device, val_loader,
without_negative=args.without_negative)
if min_val_loss > val_loss:
min_val_loss = val_loss
# Save the current model.
if args.debug:
print("Saving model @ Epoch: {}".format(epoch))
torch.save(model, model_path)
spoch = epoch
scheduler.step()
tr_stats.append([epoch, tr_loss, val_loss, pr, rec, f1])
# Save the final model too.
torch.save(model, model_path + ".fin") # Final model.
# Stats.
tr_stats = pd.DataFrame(tr_stats)
tr_stats.columns = ['Epoch', 'Training Loss', 'Val Loss', 'Precision',
'Recall', 'F1 Score']
# Perform grid search for the threshold.
# NOTE: Select optimal threshold based on F-1 score.
th_stats = []; max_f1 = 0.0; optimal = []; th = 0.05
while th < 1.0:
if args.baseline is True:
_, pr, rec, f1 = baseline_test(model, device, val_loader,
threshold=th)
else:
# For SPP.
_, pr, rec, f1 = spp_test(model, device, val_loader, threshold=th,
without_negative=args.without_negative)
row = [th, pr, rec, f1]
th_stats.append(row)
if max_f1 < f1:
max_f1 = f1
optimal = row
th += 0.05
th_stats = pd.DataFrame(th_stats)
th_stats.columns = ['Threshold', 'Precision', 'Recall', 'F1 Score']
args.th = optimal[0] # Optimal threshold.
# Print results.
if args.debug:
print(tabulate(tr_stats, headers=["Epoch", "TR Loss","Validation Loss",
"Validation Precision",
"Validation Recall",
"Validation F-1 Score"]))
print(tabulate(tr_stats, headers=["Threshold", "Precision", "Recall",
"F-1 Score"]))
plot_tr_stats(tr_stats, th_stats, spoch, optimal[0], args.save + "/" + args.name + ".tr.fig")
print("-----------Running Measurements---------")
print("Training time / epoch: {:0.3f}".format(model.time['train'].get_elapsed_time() / args.epochs))
print("Data Loader time / epoch: {:0.3f}".format(model.time['data_load'].get_elapsed_time() / args.epochs))
print("Train Forward Pass time / epoch: {:0.3f}".format(model.time['train_forward_pass'].get_elapsed_time() / args.epochs))
print("Train Loss time / epoch: {:0.3f}".format(model.time['train_loss'].get_elapsed_time() / args.epochs))
print("Optimization time / epoch: {:0.3f}".format(model.time['optimization'].get_elapsed_time() / args.epochs))
print("Test Forward Pass time / epoch: {:0.3f}".format(model.time['test_forward_pass'].get_elapsed_time() / args.epochs))
print("Inference time / epoch: {:0.3f}".format(model.time['inference'].get_elapsed_time() / args.epochs))
if args.baseline is False:
print("Faiss Inference time / epoch: {:0.3f}".format(model.time['faiss_inference'].get_elapsed_time() / args.epochs))
print("----------------------------------------")
if args.th == 0.0:
raise ValueError("Set theshold to be greater than 0.0.")
if args.debug:
print("Memory Usage post model training...")
print_memory_profile()
# Push model from CPU to GPU in order to save memory.
model = model.cpu()
if args.debug:
print("Memory Usage after deleting the model...")
print_memory_profile()
# Load saved model for testing / inference.
model = torch.load(model_path)
if args.debug:
print("Reloading snapshot...")
print_memory_profile()
if args.baseline is True:
te_loss, pr, rec,\
f1, metrics = baseline_test(model, device, test_loader,
threshold=args.th, propensity=inv_propen)
else:
te_loss, pr, rec,\
f1, metrics = spp_test(model, device, test_loader,
threshold=args.th, propensity=inv_propen,
without_negative=args.without_negative)
# Metrics.
display_agg_results(args, te_loss, pr, rec, f1, )
display_metrics(metrics)