-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskyline.go
287 lines (241 loc) · 6.78 KB
/
skyline.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
package rectpack
import (
"math"
"slices"
)
type skylineNode struct {
X, Y, Width int
}
type skylinePack struct {
algorithmBase
levelSelect Heuristic
skyline []skylineNode
wasteMap *guillotinePack
}
func newSkyline(width, height int, heuristic Heuristic) *skylinePack {
var packer skylinePack
switch heuristic & fitMask {
case MinWaste:
packer.levelSelect = MinWaste
packer.wasteMap = newGuillotine(width, height, BestAreaFit)
default: // BottomLeft
packer.levelSelect = BottomLeft
}
packer.Reset(width, height)
return &packer
}
func (p *skylinePack) Reset(width, height int) {
p.algorithmBase.Reset(width, height)
p.skyline = p.skyline[:0]
p.skyline = append(p.skyline, skylineNode{X: 0, Y: 0, Width: p.maxWidth})
if p.wasteMap != nil {
p.wasteMap.Reset(width, height)
}
}
func (p *skylinePack) Insert(padding int, sizes ...Size) []Size {
for len(sizes) > 0 {
var bestNode Rect
bestScore1 := math.MaxInt
bestScore2 := math.MaxInt
bestBinIndex := -1
bestSizeIndex := -1
for i, size := range sizes {
var score1, score2, index int
var newNode Rect
padSize(&size, padding)
switch p.levelSelect {
case MinWaste:
newNode = p.findMinWaste(size.Width, size.Height, &score2, &score1, &index)
default: // LevelBottomLeft or invalid
newNode = p.findBottomLeft(size.Width, size.Height, &score1, &score2, &index)
}
if newNode.Height != 0 {
if score1 < bestScore1 || (score1 == bestScore1 && score2 < bestScore2) {
bestNode = newNode
bestScore1 = score1
bestScore2 = score2
bestBinIndex = index
bestSizeIndex = i
}
}
}
if bestSizeIndex == -1 {
break
}
// Perform the actual packing.
p.addLevel(bestBinIndex, &bestNode)
p.usedArea += bestNode.Area()
unpadRect(&bestNode, padding)
bestNode.ID = sizes[bestSizeIndex].ID
p.packed = append(p.packed, bestNode)
sizes = slices.Delete(sizes, bestSizeIndex, bestSizeIndex+1)
}
return sizes
}
func (p *skylinePack) Used() float64 {
return float64(p.usedArea) / float64(p.maxWidth*p.maxHeight)
}
func (p *skylinePack) mergeSkylines() {
for i := 0; i < len(p.skyline)-1; i++ {
if p.skyline[i].Y == p.skyline[i+1].Y {
p.skyline[i].Width += p.skyline[i+1].Width
p.skyline = slices.Delete(p.skyline, i+1, i+2)
i--
}
}
}
func (p *skylinePack) testFit(index, width, height int, y *int) bool {
x := p.skyline[index].X
if x+width > p.maxWidth {
return false
}
widthLeft := width
i := index
*y = p.skyline[index].Y
for widthLeft > 0 {
*y = max(*y, p.skyline[i].Y)
if *y+height > p.maxHeight {
return false
}
widthLeft -= p.skyline[i].Width
i++
}
return true
}
func (p *skylinePack) testFitWithWaste(index, width, height int, y, wastedArea *int) bool {
fits := p.testFit(index, width, height, y)
if fits {
*wastedArea = p.computeWaste(index, width, height, *y)
}
return fits
}
func (p *skylinePack) computeWaste(index, width, height, y int) int {
wastedArea := 0
rectLeft := p.skyline[index].X
rectRight := rectLeft + width
for index < len(p.skyline) && p.skyline[index].X < rectRight {
if p.skyline[index].X >= rectRight || p.skyline[index].X+p.skyline[index].Width <= rectLeft {
break
}
leftSide := p.skyline[index].X
rightSide := min(rectRight, leftSide+p.skyline[index].Width)
wastedArea += (rightSide - leftSide) * (y - p.skyline[index].Y)
index++
}
return wastedArea
}
func (p *skylinePack) addWaste(index, width, height, y int) {
// int wastedArea = 0; // unused
rectLeft := p.skyline[index].X
rectRight := rectLeft + width
for index < len(p.skyline) && p.skyline[index].X < rectRight {
if p.skyline[index].X >= rectRight || p.skyline[index].X+p.skyline[index].Width <= rectLeft {
break
}
leftSide := p.skyline[index].X
rightSide := min(rectRight, leftSide+p.skyline[index].Width)
var waste Rect
waste.X = leftSide
waste.Y = p.skyline[index].Y
waste.Width = rightSide - leftSide
waste.Height = y - p.skyline[index].Y
p.wasteMap.freeRects = append(p.wasteMap.freeRects, waste)
index++
}
}
func (p *skylinePack) addLevel(index int, rect *Rect) {
// First track all wasted areas and mark them into the waste map if we're using one.
if p.wasteMap != nil {
p.addWaste(index, rect.Width, rect.Height, rect.Y)
}
var newNode skylineNode
newNode.X = rect.X
newNode.Y = rect.Y + rect.Height
newNode.Width = rect.Width
p.skyline = slices.Insert(p.skyline, index, newNode)
for i := index + 1; i < len(p.skyline); i++ {
if p.skyline[i].X < p.skyline[i-1].X+p.skyline[i-1].Width {
shrink := p.skyline[i-1].X + p.skyline[i-1].Width - p.skyline[i].X
p.skyline[i].X += shrink
p.skyline[i].Width -= shrink
if p.skyline[i].Width <= 0 {
p.skyline = slices.Delete(p.skyline, i, i+1)
i--
} else {
break
}
} else {
break
}
}
p.mergeSkylines()
}
func (p *skylinePack) findBottomLeft(width, height int, bestHeight, bestWidth, bestIndex *int) Rect {
*bestHeight = math.MaxInt
*bestIndex = -1
// Used to break ties if there are nodes at the same level. Then pick the narrowest one.
*bestWidth = math.MaxInt
var newNode Rect
for i := 0; i < len(p.skyline); i++ {
var y int
if p.testFit(i, width, height, &y) {
if y+height < *bestHeight || (y+height == *bestHeight && p.skyline[i].Width < *bestWidth) {
*bestHeight = y + height
*bestIndex = i
*bestWidth = p.skyline[i].Width
newNode.X = p.skyline[i].X
newNode.Y = y
newNode.Width = width
newNode.Height = height
}
}
if p.allowFlip && p.testFit(i, height, width, &y) {
if y+width < *bestHeight || (y+width == *bestHeight && p.skyline[i].Width < *bestWidth) {
*bestHeight = y + width
*bestIndex = i
*bestWidth = p.skyline[i].Width
newNode.X = p.skyline[i].X
newNode.Y = y
newNode.Width = height
newNode.Height = width
newNode.Flipped = true
}
}
}
return newNode
}
func (p *skylinePack) findMinWaste(width, height int, bestHeight, bestWastedArea, bestIndex *int) Rect {
*bestHeight = math.MaxInt
*bestWastedArea = math.MaxInt
*bestIndex = -1
var newNode Rect
for i := 0; i < len(p.skyline); i++ {
var y int
var wasted int
if p.testFitWithWaste(i, width, height, &y, &wasted) {
if wasted < *bestWastedArea || (wasted == *bestWastedArea && y+height < *bestHeight) {
*bestHeight = y + height
*bestWastedArea = wasted
*bestIndex = i
newNode.X = p.skyline[i].X
newNode.Y = y
newNode.Width = width
newNode.Height = height
}
}
if p.allowFlip && p.testFitWithWaste(i, height, width, &y, &wasted) {
if wasted < *bestWastedArea || (wasted == *bestWastedArea && y+width < *bestHeight) {
*bestHeight = y + width
*bestWastedArea = wasted
*bestIndex = i
newNode.X = p.skyline[i].X
newNode.Y = y
newNode.Width = height
newNode.Height = width
newNode.Flipped = true
}
}
}
return newNode
}
// vim: ts=4