-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fix_embedding.py
535 lines (422 loc) · 19.1 KB
/
train_fix_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
import time
import joblib
import numpy as np
import pandas as pd
from sklearn.cluster import DBSCAN
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_metric_learning import losses, miners
from pytorch_metric_learning.distances import LpDistance
from sklearn.preprocessing import StandardScaler, Normalizer
from torch.utils.data import DataLoader
import config.config as cfg
from utils.generate_data import compute_class_info
from base.model import BaseModel
from utils.misc import AverageMeter
from progress.bar import Bar
from base.augment import WeakAugment, StrongAugment
from base.data import DataSet, UnlabeledDataSet
from sklearn.metrics import classification_report
# ABC Train
def main_abc(args):
print("==> creating dataloader")
labeled_trainloader, unlabeled_trainloader, eval_dataloader, class_info, scaler = get_data(args)
# prepare training
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("==> creating model")
_, class_num, layer = cfg.get_features_classes(args)
model = BaseModel(layer)
model.to(device)
params = list(model.parameters())
ema_model = BaseModel(layer)
ema_model.to(device)
for param in list(ema_model.parameters()):
param.detach_()
train_criterion = SemiLoss()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(params, lr=args.lr)
ema_optimizer = WeightEMA(model, ema_model, lr=args.lr, alpha=args.ema_decay)
# train
target_disb = get_target_distribution(class_info, class_num, args.imb_ratio, args.imb_type)
ir2 = torch.min(target_disb) / target_disb
print(target_disb, ir2)
test_accs = []
acc = 0
emp_distb_u = int(0)
for epoch in range(args.start_epoch, args.epochs):
print('\nEpoch: [%d | %d] LR: %f\n' % (epoch + 1, args.epochs, args.lr))
train_loss, train_loss_x, train_loss_u, abcloss = train_imbalance(labeled_trainloader,
unlabeled_trainloader,
model, optimizer,
ema_optimizer, train_criterion,
epoch, ir2,
emp_distb_u, target_disb,
class_num, device, args)
test_loss, test_acc, testclassacc, rep = validate_imbalance(eval_dataloader, ema_model, criterion, mode='Test Stats ', class_num=class_num, device=device)
if rep['accuracy']:
save(model, scaler, opt)
acc = rep['accuracy']
print("each class accuracy test", testclassacc, testclassacc.mean())
def get_data(args):
# prepare data
data_path = f"./data/init/{args.dataset}.npy"
data = np.load(data_path, allow_pickle=False).astype('float32')
np.random.shuffle(data)
# split data
train_num = int(data.shape[0] * args.train_eval_ratio)
train_data = data[:train_num]
eval_data = data[train_num:]
train_x = train_data[:, :-2]
train_y = train_data[:, -2:].astype(np.int64)
eval_x = eval_data[:, :-2]
eval_y = eval_data[:, -2:]
# train_x, train_y = make_proxy(train_x, train_y, args)
# Standardizer or Normalizer
scaler = Normalizer().fit(train_x)
# scaler = StandardScaler().fit(train_x)
train_x = scaler.transform(train_x)
eval_x = scaler.transform(eval_x)
labeled_train_x = train_x[train_y[:, -1] != -1]
labeled_train_y = train_y[train_y[:, -1] != -1]
unlabeled_train_x = train_x[train_y[:, -1] == -1]
unlabeled_train_y = train_y[train_y[:, -1] == -1]
# dataset
labeled_train_dataset = DataSet(labeled_train_x, labeled_train_y)
weak = WeakAugment(train_data)
strong = StrongAugment(train_data)
unlabeled_train_dataset = UnlabeledDataSet(unlabeled_train_x, unlabeled_train_y, weak, strong)
eval_dataset = DataSet(eval_x, eval_y)
print(
f'labeled train size:{len(labeled_train_dataset)}, unlabeled train size: {len(unlabeled_train_dataset)}, evaluate size:{len(eval_dataset)}')
# dataloader
labeled_trainloader = DataLoader(labeled_train_dataset, batch_size=opt.batch_size, shuffle=True,
num_workers=opt.workers, drop_last=True)
unlabeled_trainloader = DataLoader(unlabeled_train_dataset, batch_size=opt.batch_size, shuffle=True,
num_workers=opt.workers,drop_last=True)
eval_dataloader = DataLoader(eval_dataset, batch_size=opt.batch_size * 10, shuffle=True, num_workers=opt.workers)
# class statistic information
class_info = compute_class_info(train_y[:, -1])
return labeled_trainloader, unlabeled_trainloader, eval_dataloader, class_info, scaler
def save(model, scaler, opt):
model_path = f"./model/{opt.dataset}-model.pt"
scaler_path = f"./model/{opt.dataset}-scaler.pkl"
torch.save(model, model_path)
joblib.dump(scaler, scaler_path)
def get_target_distribution(class_info, class_num, ir, imb_type):
disb = make_imb_data(1, class_num, ir, imb_type)
disb = np.array(disb)
disb = disb / np.sum(disb)
class_info = class_info.sort_values(by='number', ascending=False)
target_disb = np.zeros(class_num)
for i, idx in enumerate(class_info['classes']):
if idx == -1:
continue
target_disb[idx] = disb[i - 1]
zeros = len(target_disb[target_disb == 0])
if zeros != 0:
avg = (1 - np.sum(target_disb)) / zeros
target_disb[target_disb == 0] = avg
return torch.tensor(target_disb)
def make_imb_data(max_num, class_num, gamma, imb):
class_num_list = []
if imb == 'long':
mu = np.power(1 / gamma, 1 / (class_num - 1))
for i in range(class_num):
if i == (class_num - 1):
class_num_list.append(max_num / gamma)
else:
class_num_list.append(max_num * np.power(mu, i))
if imb == 'step':
for i in range(class_num):
if i < int((class_num) / 2):
class_num_list.append(max_num)
else:
class_num_list.append(max_num / gamma)
return class_num_list
def train_imbalance(labeled_trainloader, unlabeled_trainloader, model, optimizer, ema_optimizer, criterion, epoch, ir2,
emp_distb_u, target_disb, class_num, device, args):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_x = AverageMeter()
losses_u = AverageMeter()
losses_r = AverageMeter()
losses_e = AverageMeter()
losses_abc = AverageMeter()
end = time.time()
bar = Bar('Training', max=args.val_iteration)
labeled_train_iter = iter(labeled_trainloader)
unlabeled_train_iter = iter(unlabeled_trainloader)
model.train()
for batch_idx in range(args.val_iteration):
try:
inputs_x, targets_x, _ = next(labeled_train_iter)
except:
labeled_train_iter = iter(labeled_trainloader)
inputs_x, targets_x, _ = next(labeled_train_iter)
try:
(inputs_u, inputs_u2, inputs_u3), _, idx_u = next(unlabeled_train_iter)
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
(inputs_u, inputs_u2, inputs_u3), _, idx_u = next(unlabeled_train_iter)
# Measure data loading time
data_time.update(time.time() - end)
batch_size = inputs_x.size(0)
# Transform label to one-hot
targets_x2 = torch.zeros(batch_size, class_num).scatter_(1, targets_x.view(-1, 1), 1)
inputs_x, targets_x, targets_x2 = inputs_x.to(device), targets_x.to(device), targets_x2.to(device)
inputs_u, inputs_u2, inputs_u3 = inputs_u.to(device), inputs_u2.to(device), inputs_u3.to(device)
# Generate the pseudo labels
with torch.no_grad():
q1 = model(inputs_u)
outputs_u = model.classify(q1)
targets_u2 = torch.softmax(outputs_u, dim=1).detach()
# targets_u = torch.argmax(targets_u2, dim=1)
q = model(inputs_x)
q2 = model(inputs_u2)
q3 = model(inputs_u3)
max_p, p_hat = torch.max(targets_u2, dim=1)
p_hat = torch.zeros(batch_size, class_num).to(device).scatter_(1, p_hat.view(-1,1),1)
select_mask = max_p.ge(0.95)
select_mask = torch.cat([select_mask, select_mask], 0).float()
all_targets = torch.cat([targets_x2, p_hat, p_hat], dim = 0)
logits_x = model.classify(q)
logits_u1 = model.classify(q2)
logits_u2 = model.classify(q3)
logits_u = torch.cat([logits_u1, logits_u2], dim=0)
maskforbalance = torch.bernoulli(torch.sum(targets_x2 * ir2.clone().to(device), dim=1).detach())
embd = model.abc_embedding(q)
embd_u = model.abc_embedder(q1)
embd_u2 = model.abc_embedder(q2)
embd_u3 = model.abc_embedder(q3)
logit = model.abc_classify(embd)
logitu = model.abc_classify(embd_u)
logitu2 = model.abc_classify(embd_u2)
logitu3 = model.abc_classify(embd_u3)
logits = nn.functional.softmax(logit, dim=-1)
logitsu1 = nn.functional.softmax(logitu, dim=-1)
max_p2, label_u = torch.max(logitsu1, dim=1)
select_mask2 = max_p2.ge(0.95)
label_u = torch.zeros(batch_size, class_num).scatter_(1, label_u.cpu().view(-1, 1), 1)
ir22 = 1 - (epoch / args.epochs) * (1 - ir2)
maskforbalanceu = torch.bernoulli(torch.sum(label_u.to(device) * ir22.to(device), dim=1).detach())
logitsu2 = nn.functional.softmax(logitu2, dim=-1)
logitsu3 = nn.functional.softmax(logitu3, dim=-1)
abcloss = -torch.mean(maskforbalance * torch.sum(torch.log(logits) * targets_x2.to(device), dim=1))
abcloss1 = -torch.mean(
select_mask2 * maskforbalanceu * torch.sum(torch.log(logitsu2) * logitsu1.to(device).detach(), dim=1))
abcloss2 = -torch.mean(
select_mask2 * maskforbalanceu * torch.sum(torch.log(logitsu3) * logitsu1.to(device).detach(), dim=1))
totalabcloss = abcloss + abcloss1 + abcloss2
Lx, Lu = criterion(logits_x, all_targets[:batch_size], logits_u, all_targets[batch_size:], select_mask)
loss = Lx + Lu + totalabcloss
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
ema_optimizer.step()
losses.update(loss.item(), inputs_x.size(0))
losses_x.update(Lx.item(), inputs_x.size(0))
losses_u.update(Lu.item(), inputs_x.size(0))
losses_abc.update(abcloss.item(), inputs_x.size(0))
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ' \
'Loss: {loss:.4f} | Loss_x: {loss_x:.4f} | Loss_u: {loss_u:.4f} | ' \
' Loss_m: {loss_m:.4f}'.format(
batch=batch_idx + 1,
size=args.val_iteration,
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
loss=losses.avg,
loss_x=losses_x.avg,
loss_u=losses_u.avg,
loss_m=losses_abc.avg,
)
bar.next()
bar.finish()
return (losses.avg, losses_x.avg, losses_u.avg, losses_abc.avg)
def linear_rampup(current, rampup_length):
if rampup_length == 0:
return 1.0
else:
current = np.clip(current / rampup_length, 0.0, 1.0)
return float(current)
class SemiLoss(object):
def __call__(self, outputs_x, targets_x, outputs_u, targets_u, mask):
Lx = -torch.mean(torch.sum(F.log_softmax(outputs_x, dim=1) * targets_x, dim=1))
Lu = -torch.mean(torch.sum(F.log_softmax(outputs_u, dim=1) * targets_u, dim=1) * mask)
return Lx, Lu
class WeightEMA(object):
def __init__(self, model, ema_model, lr, alpha=0.999):
self.model = model
self.ema_model = ema_model
self.alpha = alpha
self.params = list(model.state_dict().values())
self.ema_params = list(ema_model.state_dict().values())
self.wd = 0.2 * lr
for param, ema_param in zip(self.params, self.ema_params):
param.data.copy_(ema_param.data)
def step(self):
one_minus_alpha = 1.0 - self.alpha
for param, ema_param in zip(self.params, self.ema_params):
ema_param = ema_param.float()
param = param.float()
ema_param.mul_(self.alpha)
ema_param.add_(param * one_minus_alpha)
param.mul_(1 - self.wd)
def interleave_offsets(batch, nu):
groups = [batch // (nu + 1)] * (nu + 1)
for x in range(batch - sum(groups)):
groups[-x - 1] += 1
offsets = [0]
for g in groups:
offsets.append(offsets[-1] + g)
assert offsets[-1] == batch
return offsets
def interleave(xy, batch):
nu = len(xy) - 1
offsets = interleave_offsets(batch, nu)
xy = [[v[offsets[p]:offsets[p + 1]] for p in range(nu + 1)] for v in xy]
for i in range(1, nu + 1):
xy[0][i], xy[i][i] = xy[i][i], xy[0][i]
return [torch.cat(v, dim=0) for v in xy]
def validate_imbalance(val_loader, model, criterion, mode, class_num, device):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
accperclass = np.zeros((class_num))
end = time.time()
bar = Bar(f'{mode}', max=len(val_loader))
label_true = []
label_predict = []
with torch.no_grad():
for batch_idx, (inputs, targets, _) in enumerate(val_loader):
targets = targets.long()
# measure data loading time
data_time.update(time.time() - end)
inputs, targets = inputs.to(device), targets.to(device)
# compute output
targetsonehot = torch.zeros(inputs.size()[0], class_num).scatter_(1, targets.cpu().view(-1, 1).long(), 1)
q = model(inputs)
outputs2 = model.abc_classify(model.abc_embedder(q))
unbiasedscore = nn.functional.softmax(outputs2, dim=-1)
unbiased = torch.argmax(unbiasedscore, dim=1)
label_true.append(targets.cpu().detach())
label_predict.append(unbiased.cpu().detach())
outputs2onehot = torch.zeros(inputs.size()[0], class_num).scatter_(1, unbiased.cpu().view(-1, 1).long(), 1)
loss = criterion(outputs2, targets)
accperclass = accperclass + torch.sum(targetsonehot * outputs2onehot, dim=0).cpu().detach().numpy().astype(
np.int64)
# measure accuracy and record loss
losses.update(loss.item(), inputs.size(0))
# top1.update(prec1.item(), inputs.size(0))
# top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | ' \
'Loss: {loss:.4f}'.format(
batch=batch_idx + 1,
size=len(val_loader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
# top1=top1.avg,
# top5=top5.avg,
)
bar.next()
bar.finish()
label_true = torch.vstack(label_true).view(-1,1).numpy()
label_predict = torch.vstack(label_predict).view(-1,1).numpy()
print(classification_report(label_true, label_predict, digits=2, zero_division=1))
rep = classification_report(label_true, label_predict, digits=4, output_dict=True, zero_division=1)
return (losses.avg, top1.avg, accperclass, rep)
def make_proxy(X, Y, opt):
# X, Y‘, fake2true:从子标签到真实标签的映射
true_label = Y[:,0]
semi_label = Y[:, -1]
classes = set(true_label)
sub2true = {}
new_label = 0
new_data = []
for cls in classes:
index = (true_label == cls)
data = X[index]
model = DBSCAN()
model.fit(data)
sub_labels = model.labels_
sub_classes = set(sub_labels)
for sub_cls in sub_classes:
sub_idx = (sub_labels == sub_cls)
sub_true_label = np.expand_dims(true_label[index][sub_idx], axis=1)
sub_semi_label = np.expand_dims(semi_label[index][sub_idx], axis=1)
sub_label = np.ones(sub_true_label.shape) * new_label
sub_data = np.hstack([data[sub_idx], sub_true_label, sub_label, sub_semi_label])
new_data.append(sub_data)
sub2true[new_label] = cls
new_label += 1
new_data = np.vstack(new_data)
return new_data[:,:-3], new_data[:,-3:], sub2true
def transform(opt, init=True):
# load data
if init:
data_path = f"./data/init/{opt.dataset}.npy"
out_path = f"./data/init/trans/{opt.dataset}.csv"
else:
data_path = f"./data/eval/{opt.dataset}.npy"
out_path = f"./data/eval/trans/{opt.dataset}.csv"
data = np.load(data_path, allow_pickle=False).astype('float32')
np.random.shuffle(data)
# Standardscaler or norminalizer
X = data[:, :-2]
Y = data[:, -2:].astype(np.int64)
scaler_path = f"./model/{opt.dataset}-scaler.pkl"
scaler = joblib.load(scaler_path)
X = scaler.transform(X)
# dataset
dataset = DataSet(X, Y)
# dataloader
dataloader = DataLoader(
dataset, batch_size=opt.batch_size * 10, shuffle=True, num_workers=4)
# device : cuda or cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = f"./model/{opt.dataset}-model.pt"
models = torch.load(model_path)
models.to(device)
models.eval()
embeddings = []
with torch.no_grad():
for i, (inputs, target, mlabel) in enumerate(dataloader):
inputs = inputs.to(device)
target = target.to(device)
trunk = models.trunk(inputs)
embedding = models.embedder(trunk)
embeddings.append(
torch.hstack((embedding.cpu(), torch.unsqueeze(target.cpu(), -1), torch.unsqueeze(mlabel.cpu(), -1))))
embeddings = torch.vstack(embeddings)
embeddings = embeddings.numpy()
df = pd.DataFrame(embeddings)
header = []
for i in range(header.shape[0] - 1):
header.append(f"f{i}")
header.append("class")
df.to_csv(out_path, index=False, header=header)
if __name__ == "__main__":
dir = 'data/benchmark/realworld'
datasets = ['spam', 'gas', 'covtypeNorm']
opt = cfg.get_options()
for dataset in datasets:
opt.dataset = dataset
opt.datatype = 'realworld'
main_abc(opt)
transform(opt, init=False)