-
Notifications
You must be signed in to change notification settings - Fork 236
/
Copy pathFStar.Tactics.CanonCommSemiring.fst
1708 lines (1584 loc) · 63 KB
/
FStar.Tactics.CanonCommSemiring.fst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommSemiring
/// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1)
///
/// The tactic [canon_semiring] is parameterized by the base type [a] and
/// a semiring theory [cr a]. This requires:
///
/// - A commutative monoid (a, +, 0) for addition
/// That is, + is associative, commutative and has identity element 0
/// - An additive inverse operator for (a, +, 0), making it an Abelian group
/// That is, a + -a = 0
/// - A commutative monoid (a, *, 1) for multiplication
/// That is, * is associative, commutative and has identity element 1
/// - Multiplication left-distributes over addition
/// That is, a * (b + c) == a * b + a * c
/// - 0 is an absorbing element of multiplication
/// That is, 0 * a = 0
///
/// In contrast to the previous version of FStar.Tactics.CanonCommSemiring,
/// the tactic defined here canonizes products, additions and additive inverses,
/// collects coefficients in monomials, and eliminates trivial expressions.
///
/// This is based on the legacy (second) version of Coq's ring tactic:
/// - https://github.com/coq-contribs/legacy-ring/
///
/// See also the newest ring tactic in Coq, which is even more general
/// and efficient:
/// - https://coq.inria.fr/refman/addendum/ring.html
/// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf
open FStar.List
open FStar.Algebra.CommMonoid
(* Trying to not just open FStar.Tactics.V2 to reduce deps.
TODO: Add an interface to this module. It's non trivial due to the quoting. *)
open FStar.Stubs.Reflection.Types
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Stubs.Tactics.Types
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.Util
open FStar.Tactics.NamedView
open FStar.Tactics.MApply
private
let term_eq = FStar.Reflection.TermEq.Simple.term_eq
(** An attribute for marking definitions to unfold by the tactic *)
irreducible let canon_attr = ()
///
/// Commutative semiring theory
///
let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) =
let ( + ) = cm_add.mult in
let ( * ) = cm_mult.mult in
x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z)
let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) =
let ( + ) = cm_add.mult in
let ( * ) = cm_mult.mult in
x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z)
let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) =
x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit)
let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) =
let ( + ) = cm_add.mult in
x:a -> Lemma (x + opp x == cm_add.unit)
[@@canon_attr]
unopteq
type cr (a:Type) =
| CR :
cm_add: cm a ->
cm_mult: cm a ->
opp: (a -> a) ->
add_opp: add_opp_r_lemma a cm_add opp ->
distribute: distribute_left_lemma a cm_add cm_mult ->
mult_zero_l: mult_zero_l_lemma a cm_add cm_mult ->
cr a
let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult =
fun x y z ->
r.cm_mult.commutativity (r.cm_add.mult x y) z;
r.distribute z x y;
r.cm_mult.commutativity x z;
r.cm_mult.commutativity y z
///
/// Syntax of canonical ring expressions
///
(**
* Marking expressions we would like to normalize fully.
* This does not do anything at the moment, but it would be nice
* to have a cheap mechanism to make this work without traversing the
* whole goal.
**)
[@@canon_attr]
unfold let norm_fully (#a:Type) (x:a) = x
let index: eqtype = nat
(*
* A list of variables represents a sorted product of one or more variables.
* We do not need to prove sortedness to prove correctness, so we never
* make it explicit.
*)
type varlist =
| Nil_var : varlist
| Cons_var : index -> varlist -> varlist
(*
* A canonical expression represents an ordered sum of monomials.
* Each monomial is either:
* - a varlist (a product of variables): x1 * ... * xk
* - a product of a scalar and a varlist: c * x1 * ... * xk
*
* The order on monomials is the lexicographic order on varlist, with the
* additional convention that monomials with a scalar are less than monomials
* without a scalar.
*)
type canonical_sum a =
| Nil_monom : canonical_sum a
| Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a
| Cons_varlist : varlist -> canonical_sum a -> canonical_sum a
[@@canon_attr]
let rec varlist_lt (x y:varlist) : bool =
match x, y with
| Nil_var, Cons_var _ _ -> true
| Cons_var i xs, Cons_var j ys ->
if i < j then true else i = j && varlist_lt xs ys
| _, _ -> false
[@@canon_attr]
val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0])
[@@canon_attr]
val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1])
(* Merges two lists of variables, preserving sortedness *)
[@@canon_attr]
let rec varlist_merge l1 l2 =
match l1, l2 with
| _, Nil_var -> l1
| Nil_var, _ -> l2
| Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2
and vm_aux v1 t1 l2 =
match l2 with
| Cons_var v2 t2 ->
if v1 < v2
then Cons_var v1 (varlist_merge t1 l2)
else Cons_var v2 (vm_aux v1 t1 t2)
| _ -> Cons_var v1 t1
(*
* Merges two canonical expressions
*
* We require that [a] is eqtype for better reasons later.
* Here it is convenient to fix the universe of [a] in
* mutually recursive functions.
*)
[@@canon_attr]
val canonical_sum_merge : #a:eqtype -> cr a
-> s1:canonical_sum a -> s2:canonical_sum a
-> Tot (canonical_sum a) (decreases %[s1; s2; 0])
[@@canon_attr]
val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a
-> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1])
[@@canon_attr]
let rec canonical_sum_merge #a r s1 s2 =
let aplus = r.cm_add.mult in
let aone = r.cm_mult.unit in
match s1 with
| Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2
| Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2
| Nil_monom -> s2
and csm_aux #a r c1 l1 t1 s2 =
let aplus = r.cm_add.mult in
let aone = r.cm_mult.unit in
match s2 with
| Cons_monom c2 l2 t2 ->
if l1 = l2
then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2)
else
if varlist_lt l1 l2
then Cons_monom c1 l1 (canonical_sum_merge r t1 s2)
else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2)
| Cons_varlist l2 t2 ->
if l1 = l2
then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2)
else
if varlist_lt l1 l2
then Cons_monom c1 l1 (canonical_sum_merge r t1 s2)
else Cons_varlist l2 (csm_aux r c1 l1 t1 t2)
| Nil_monom ->
//if c1 = aone then Cons_varlist l1 t1 else
Cons_monom c1 l1 t1
(* Inserts a monomial into the appropriate position in a canonical sum *)
val monom_insert: #a:eqtype -> r:cr a
-> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a
[@@canon_attr]
let rec monom_insert #a r c1 l1 s2 =
let aplus = r.cm_add.mult in
let aone = r.cm_mult.unit in
match s2 with
| Cons_monom c2 l2 t2 ->
if l1 = l2
then Cons_monom (norm_fully (aplus c1 c2)) l1 t2
else
if varlist_lt l1 l2
then Cons_monom c1 l1 s2
else Cons_monom c2 l2 (monom_insert r c1 l1 t2)
| Cons_varlist l2 t2 ->
if l1 = l2
then Cons_monom (norm_fully (aplus c1 aone)) l1 t2
else
if varlist_lt l1 l2
then Cons_monom c1 l1 s2
else Cons_varlist l2 (monom_insert r c1 l1 t2)
| Nil_monom ->
if c1 = aone
then Cons_varlist l1 Nil_monom
else Cons_monom c1 l1 Nil_monom
(* Inserts a monomial without scalar into a canonical sum *)
val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a
[@@canon_attr]
let varlist_insert #a r l1 s2 =
let aone = r.cm_mult.unit in
monom_insert r aone l1 s2
(* Multiplies a sum by a scalar c0 *)
val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a
[@@canon_attr]
let rec canonical_sum_scalar #a r c0 s =
let amult = r.cm_mult.mult in
match s with
| Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t)
| Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t)
| Nil_monom -> Nil_monom
(* Multiplies a sum by a monomial without scalar *)
val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist
-> canonical_sum a -> canonical_sum a
[@@canon_attr]
let rec canonical_sum_scalar2 #a r l0 s =
match s with
| Cons_monom c l t ->
monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)
| Cons_varlist l t ->
varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)
| Nil_monom -> Nil_monom
(* Multiplies a sum by a monomial with scalar *)
val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist
-> canonical_sum a -> canonical_sum a
[@@canon_attr]
let rec canonical_sum_scalar3 #a r c0 l0 s =
let amult = r.cm_mult.mult in
match s with
| Cons_monom c l t ->
monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l)
(canonical_sum_scalar3 r c0 l0 t)
| Cons_varlist l t ->
monom_insert r c0 (varlist_merge l0 l)
(canonical_sum_scalar3 r c0 l0 t)
| Nil_monom -> s
(* Multiplies two canonical sums *)
val canonical_sum_prod: #a:eqtype -> cr a
-> canonical_sum a -> canonical_sum a -> canonical_sum a
[@@canon_attr]
let rec canonical_sum_prod #a r s1 s2 =
match s1 with
| Cons_monom c1 l1 t1 ->
canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2)
(canonical_sum_prod r t1 s2)
| Cons_varlist l1 t1 ->
canonical_sum_merge r (canonical_sum_scalar2 r l1 s2)
(canonical_sum_prod r t1 s2)
| Nil_monom -> s1
///
/// Syntax of concrete semiring polynomials
///
(* This is the type where we reflect expressions before normalization *)
type spolynomial a =
| SPvar : index -> spolynomial a
| SPconst : a -> spolynomial a
| SPplus : spolynomial a -> spolynomial a -> spolynomial a
| SPmult : spolynomial a -> spolynomial a -> spolynomial a
(** Canonize a reflected expression *)
val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a
[@@canon_attr]
let rec spolynomial_normalize #a r p =
match p with
| SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom
| SPconst c -> Cons_monom c Nil_var Nil_monom
| SPplus l q ->
canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q)
| SPmult l q ->
canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q)
(**
* Simplify a canonical sum.
* Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk
**)
val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a
[@@canon_attr]
let rec canonical_sum_simplify #a r s =
let azero = r.cm_add.unit in
let aone = r.cm_mult.unit in
let aplus = r.cm_add.mult in
match s with
| Cons_monom c l t ->
if norm_fully (c = azero) then canonical_sum_simplify r t
else
if norm_fully (c = aone)
then Cons_varlist l (canonical_sum_simplify r t)
else Cons_monom c l (canonical_sum_simplify r t)
| Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t)
| Nil_monom -> s
(**
* The main canonization algorithm: turn an expression into a sum and
* simplify it.
**)
val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a
[@@canon_attr]
let spolynomial_simplify #a r p =
canonical_sum_simplify r
(spolynomial_normalize r p)
///
/// Interpretation of varlists, monomials and canonical sums
///
type var = nat
(**
* The variable map:
* This maps polynomial variables to ring expressions. That is, any term
* that is not an addition or a multiplication is turned into a variable
*
* The representation is inefficient. For large terms it might be worthwhile
* using a better data structure.
**)
let vmap a = list (var & a) & a
(** Add a new entry in a variable map *)
let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a =
let l, y = vm in (x, xa) :: l, y
(** Quotes a list *)
let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) :
Tac term =
match xs with
| [] -> mk_app (`Nil) [(ta, Q_Implicit)]
| x::xs' -> mk_app (`Cons) [(ta, Q_Implicit);
(quotea x, Q_Explicit);
(quote_list ta quotea xs', Q_Explicit)]
(** Quotes a variable map *)
let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term =
let quote_map_entry (p:(nat & a)) : Tac term =
mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit);
(pack (Tv_Const (C_Int (fst p))), Q_Explicit);
(quotea (snd p), Q_Explicit)] in
let tyentry = mk_e_app (`tuple2) [(`nat); ta] in
let tlist = quote_list tyentry quote_map_entry (fst vm) in
let tylist = mk_e_app (`list) [tyentry] in
mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit);
(tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)]
(**
* A varlist is interpreted as the product of the entries in the variable map
*
* Unbound variables are mapped to the default value according to the map.
* This would normally never occur, but it makes it easy to prove correctness.
*)
[@@canon_attr]
let interp_var (#a:Type) (vm:vmap a) (i:index) =
match List.Tot.Base.assoc i (fst vm) with
| Some x -> x
| _ -> snd vm
[@@canon_attr]
private
let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist)
: Tot a (decreases t) =
let amult = r.cm_mult.mult in
match t with
| Nil_var -> interp_var vm x
| Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t')
[@@canon_attr]
let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) =
let aone = r.cm_mult.unit in
match l with
| Nil_var -> aone
| Cons_var x t -> ivl_aux r vm x t
[@@canon_attr]
let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) =
let amult = r.cm_mult.mult in
match l with
| Nil_var -> c
| Cons_var x t -> amult c (ivl_aux r vm x t)
[@@canon_attr]
let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a)
: Tot a (decreases s) =
let aplus = r.cm_add.mult in
match s with
| Nil_monom -> x
| Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t)
| Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t)
(** Interpretation of a canonical sum *)
[@@canon_attr]
let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a =
let azero = r.cm_add.unit in
match s with
| Nil_monom -> azero
| Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t
| Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t
(** Interpretation of a polynomial *)
[@@canon_attr]
let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a =
let aplus = r.cm_add.mult in
let amult = r.cm_mult.mult in
match p with
| SPconst c -> c
| SPvar i -> interp_var vm i
| SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2)
| SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2)
///
/// Proof of correctness
///
val mult_one_l (#a:Type) (r:cr a) (x:a) :
Lemma (r.cm_mult.mult r.cm_mult.unit x == x)
[SMTPat (r.cm_mult.mult r.cm_mult.unit x)]
let mult_one_l #a r x =
r.cm_mult.identity x
val mult_one_r (#a:Type) (r:cr a) (x:a) :
Lemma (r.cm_mult.mult x r.cm_mult.unit == x)
[SMTPat (r.cm_mult.mult x r.cm_mult.unit)]
let mult_one_r #a r x =
r.cm_mult.commutativity r.cm_mult.unit x
val mult_zero_l (#a:Type) (r:cr a) (x:a) :
Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit)
[SMTPat (r.cm_mult.mult r.cm_add.unit x)]
let mult_zero_l #a r x =
r.mult_zero_l x
val mult_zero_r (#a:Type) (r:cr a) (x:a) :
Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit)
[SMTPat (r.cm_mult.mult x r.cm_add.unit)]
let mult_zero_r #a r x =
r.cm_mult.commutativity x r.cm_add.unit
val add_zero_l (#a:Type) (r:cr a) (x:a) :
Lemma (r.cm_add.mult r.cm_add.unit x == x)
[SMTPat (r.cm_add.mult r.cm_add.unit x)]
let add_zero_l #a r x =
r.cm_add.identity x
val add_zero_r (#a:Type) (r:cr a) (x:a) :
Lemma (r.cm_add.mult x r.cm_add.unit == x)
[SMTPat (r.cm_add.mult x r.cm_add.unit)]
let add_zero_r #a r x =
r.cm_add.commutativity r.cm_add.unit x
val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma
(requires r.cm_add.mult x y == r.cm_add.unit)
(ensures y == r.opp x)
let opp_unique #a r x y =
let ( + ) = r.cm_add.mult in
let zero = r.cm_add.unit in
calc (==) {
y;
== { r.add_opp x }
y + (x + r.opp x);
== { r.cm_add.associativity y x (r.opp x) }
(y + x) + r.opp x;
== { r.cm_add.commutativity x y }
zero + r.opp x;
== { }
r.opp x;
}
val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma
(r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit)
let add_mult_opp #a r x =
let ( + ) = r.cm_add.mult in
let ( * ) = r.cm_mult.mult in
let zero = r.cm_add.unit in
let one = r.cm_mult.unit in
calc (==) {
x + r.opp one * x;
== { }
one * x + r.opp one * x;
== { distribute_right r one (r.opp one) x }
(one + r.opp one) * x;
== { r.add_opp one }
zero * x;
== { }
zero;
}
val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma
(ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v))
let ivl_aux_ok #a r vm v i = ()
val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) :
Lemma
(ensures
interp_vl r vm (vm_aux v t l) ==
r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l))
(decreases %[t; l; 1])
val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) :
Lemma
(ensures
interp_vl r vm (varlist_merge x y) ==
r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y))
(decreases %[x; y; 0])
let rec varlist_merge_ok #a r vm x y =
let amult = r.cm_mult.mult in
match x, y with
| Cons_var v1 t1, Nil_var -> ()
| Cons_var v1 t1, Cons_var v2 t2 ->
if v1 < v2
then
begin
varlist_merge_ok r vm t1 y;
assert (
interp_vl r vm (varlist_merge x y) ==
amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y)));
r.cm_mult.associativity
(interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y)
end
else
vm_aux_ok r vm v1 t1 y
| Nil_var, _ -> ()
and vm_aux_ok #a r vm v1 t1 l2 =
match l2 with
| Cons_var v2 t2 ->
if v1 < v2
then
begin
varlist_merge_ok r vm t1 l2;
r.cm_mult.associativity
(interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2)
end
else
begin
vm_aux_ok r vm v1 t1 t2;
calc (==) {
interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2));
== { }
ivl_aux r vm v2 (vm_aux v1 t1 t2);
== { }
r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2));
== { }
r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2));
== { r.cm_mult.commutativity
(interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) }
r.cm_mult.mult (interp_var vm v2)
(r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) );
== { r.cm_mult.associativity
(interp_var vm v2)
(interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) }
r.cm_mult.mult
(r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2))
(interp_vl r vm (Cons_var v1 t1));
== { r.cm_mult.commutativity
(interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) }
r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2));
}
end
| _ -> ()
val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a ->
Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s))
(decreases s)
let rec ics_aux_ok #a r vm x s =
match s with
| Nil_monom -> ()
| Cons_varlist l t ->
ics_aux_ok r vm (interp_vl r vm l) t
| Cons_monom c l t ->
ics_aux_ok r vm (interp_m r vm c l) t
val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist ->
Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l))
let interp_m_ok #a r vm x l = ()
val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma
(let aplus = r.cm_add.mult in
aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z))
let aplus_assoc_4 #a r w x y z =
let aplus = r.cm_add.mult in
let assoc = r.cm_add.associativity in
let comm = r.cm_add.commutativity in
calc (==) {
aplus (aplus w x) (aplus y z);
== { assoc w x (aplus y z) }
aplus w (aplus x (aplus y z));
== { comm x (aplus y z) }
aplus w (aplus (aplus y z) x);
== { assoc w (aplus y z) x }
aplus (aplus w (aplus y z)) x;
== { assoc w y z }
aplus (aplus (aplus w y) z) x;
== { assoc (aplus w y) z x }
aplus (aplus w y) (aplus z x);
== { comm z x }
aplus (aplus w y) (aplus x z);
}
val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a
-> s1:canonical_sum a -> s2:canonical_sum a ->
Lemma
(ensures
interp_cs r vm (canonical_sum_merge r s1 s2) ==
r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2))
(decreases %[s1; s2; 0])
val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a
-> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a ->
Lemma
(ensures
interp_cs r vm (csm_aux r c1 l1 t1 s2) ==
r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2))
(decreases %[t1; s2; 1])
let rec canonical_sum_merge_ok #a r vm s1 s2 =
let aone = r.cm_mult.unit in
let aplus = r.cm_add.mult in
let amult = r.cm_mult.mult in
match s1 with
| Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2
| Cons_varlist l1 t1 ->
calc (==) {
interp_cs r vm (canonical_sum_merge r s1 s2);
== { }
interp_cs r vm (csm_aux r aone l1 t1 s2);
== { csm_aux_ok #a r vm aone l1 t1 s2 }
aplus (interp_cs r vm (Cons_monom aone l1 t1))
(interp_cs r vm s2);
== { ics_aux_ok r vm (interp_vl r vm l1) t1 }
aplus (interp_cs r vm (Cons_varlist l1 t1))
(interp_cs r vm s2);
}
| Nil_monom -> ()
and csm_aux_ok #a r vm c1 l1 t1 s2 =
let aplus = r.cm_add.mult in
let aone = r.cm_mult.unit in
let amult = r.cm_mult.mult in
match s2 with
| Nil_monom -> ()
| Cons_monom c2 l2 t2 ->
let s1 = Cons_monom c1 l1 t1 in
if l1 = l2 then
begin
calc (==) {
interp_cs r vm (csm_aux r c1 l1 t1 s2);
== { }
ics_aux r vm (interp_m r vm (aplus c1 c2) l1)
(canonical_sum_merge r t1 t2);
== { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1)
(canonical_sum_merge r t1 t2) }
aplus (interp_m r vm (aplus c1 c2) l1)
(interp_cs r vm (canonical_sum_merge r t1 t2));
== { interp_m_ok r vm (aplus c1 c2) l1 }
aplus (amult (aplus c1 c2) (interp_vl r vm l1))
(interp_cs r vm (canonical_sum_merge r t1 t2));
== { canonical_sum_merge_ok r vm t1 t2 }
aplus (amult (aplus c1 c2) (interp_vl r vm l1))
(aplus (interp_cs r vm t1) (interp_cs r vm t2));
== { distribute_right r c1 c2 (interp_vl r vm l1) }
aplus (aplus (amult c1 (interp_vl r vm l1))
(amult c2 (interp_vl r vm l2)))
(aplus (interp_cs r vm t1)
(interp_cs r vm t2));
== { aplus_assoc_4 r
(amult c1 (interp_vl r vm l1))
(amult c2 (interp_vl r vm l2))
(interp_cs r vm t1)
(interp_cs r vm t2) }
aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1))
(aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2));
== { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1;
interp_m_ok r vm c1 l1 }
aplus (interp_cs r vm s1)
(aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2));
== { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2;
interp_m_ok r vm c2 l2 }
aplus (interp_cs r vm s1) (interp_cs r vm s2);
}
end
else if varlist_lt l1 l2 then
begin
calc (==) {
interp_cs r vm (canonical_sum_merge r s1 s2);
== { }
ics_aux r vm (interp_m r vm c1 l1)
(canonical_sum_merge r t1 s2);
== { ics_aux_ok r vm (interp_m r vm c1 l1)
(canonical_sum_merge r t1 s2) }
aplus (interp_m r vm c1 l1)
(interp_cs r vm (canonical_sum_merge r t1 s2));
== { interp_m_ok r vm c1 l1 }
aplus (amult c1 (interp_vl r vm l1))
(interp_cs r vm (canonical_sum_merge r t1 s2));
== { canonical_sum_merge_ok r vm t1 s2 }
aplus (amult c1 (interp_vl r vm l1))
(aplus (interp_cs r vm t1) (interp_cs r vm s2));
== { r.cm_add.associativity
(amult c1 (interp_vl r vm l1))
(interp_cs r vm t1)
(interp_cs r vm s2)
}
aplus (aplus (amult c1 (interp_vl r vm l1))
(interp_cs r vm t1))
(interp_cs r vm s2);
== { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1;
interp_m_ok r vm c1 l1 }
aplus (interp_cs r vm s1) (interp_cs r vm s2);
}
end
else
begin
calc (==) {
interp_cs r vm (csm_aux r c1 l1 t1 s2);
== { }
ics_aux r vm (interp_m r vm c2 l2)
(csm_aux r c1 l1 t1 t2);
== { ics_aux_ok r vm (interp_m r vm c2 l2)
(csm_aux r c1 l1 t1 t2) }
aplus (interp_m r vm c2 l2)
(interp_cs r vm (csm_aux r c1 l1 t1 t2));
== { interp_m_ok r vm c2 l2 }
aplus (amult c2 (interp_vl r vm l2))
(interp_cs r vm (csm_aux r c1 l1 t1 t2));
== { csm_aux_ok r vm c1 l1 t1 t2 }
aplus (amult c2 (interp_vl r vm l2))
(aplus (interp_cs r vm s1) (interp_cs r vm t2));
== { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) }
aplus (amult c2 (interp_vl r vm l2))
(aplus (interp_cs r vm t2) (interp_cs r vm s1));
== { r.cm_add.associativity
(amult c2 (interp_vl r vm l2))
(interp_cs r vm t2)
(interp_cs r vm s1)
}
aplus (aplus (amult c2 (interp_vl r vm l2))
(interp_cs r vm t2))
(interp_cs r vm s1);
== { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1;
interp_m_ok r vm c1 l1 }
aplus (interp_cs r vm s2) (interp_cs r vm s1);
== { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) }
aplus (interp_cs r vm s1) (interp_cs r vm s2);
}
end
| Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone
let c2 = aone in
let s1 = Cons_monom c1 l1 t1 in
if l1 = l2 then
begin
calc (==) {
interp_cs r vm (csm_aux r c1 l1 t1 s2);
== { }
ics_aux r vm (interp_m r vm (aplus c1 c2) l1)
(canonical_sum_merge r t1 t2);
== { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1)
(canonical_sum_merge r t1 t2) }
aplus (interp_m r vm (aplus c1 c2) l1)
(interp_cs r vm (canonical_sum_merge r t1 t2));
== { interp_m_ok r vm (aplus c1 c2) l1 }
aplus (amult (aplus c1 c2) (interp_vl r vm l1))
(interp_cs r vm (canonical_sum_merge r t1 t2));
== { canonical_sum_merge_ok r vm t1 t2 }
aplus (amult (aplus c1 c2) (interp_vl r vm l1))
(aplus (interp_cs r vm t1) (interp_cs r vm t2));
== { distribute_right r c1 c2 (interp_vl r vm l1) }
aplus (aplus (amult c1 (interp_vl r vm l1))
(amult c2 (interp_vl r vm l2)))
(aplus (interp_cs r vm t1)
(interp_cs r vm t2));
== { aplus_assoc_4 r
(amult c1 (interp_vl r vm l1))
(amult c2 (interp_vl r vm l2))
(interp_cs r vm t1)
(interp_cs r vm t2) }
aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1))
(aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2));
== { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1;
interp_m_ok r vm c1 l1 }
aplus (interp_cs r vm s1)
(aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2));
== { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2;
interp_m_ok r vm c2 l2 }
aplus (interp_cs r vm s1) (interp_cs r vm s2);
}
end
else if varlist_lt l1 l2 then
begin
calc (==) {
interp_cs r vm (canonical_sum_merge r s1 s2);
== { }
ics_aux r vm (interp_m r vm c1 l1)
(canonical_sum_merge r t1 s2);
== { ics_aux_ok r vm (interp_m r vm c1 l1)
(canonical_sum_merge r t1 s2) }
aplus (interp_m r vm c1 l1)
(interp_cs r vm (canonical_sum_merge r t1 s2));
== { interp_m_ok r vm c1 l1 }
aplus (amult c1 (interp_vl r vm l1))
(interp_cs r vm (canonical_sum_merge r t1 s2));
== { canonical_sum_merge_ok r vm t1 s2 }
aplus (amult c1 (interp_vl r vm l1))
(aplus (interp_cs r vm t1) (interp_cs r vm s2));
== { r.cm_add.associativity
(amult c1 (interp_vl r vm l1))
(interp_cs r vm t1)
(interp_cs r vm s2)
}
aplus (aplus (amult c1 (interp_vl r vm l1))
(interp_cs r vm t1))
(interp_cs r vm s2);
== { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1;
interp_m_ok r vm c1 l1 }
aplus (interp_cs r vm s1) (interp_cs r vm s2);
}
end
else
begin
calc (==) {
interp_cs r vm (csm_aux r c1 l1 t1 s2);
== { }
ics_aux r vm (interp_m r vm c2 l2)
(csm_aux r c1 l1 t1 t2);
== { ics_aux_ok r vm (interp_m r vm c2 l2)
(csm_aux r c1 l1 t1 t2) }
aplus (interp_m r vm c2 l2)
(interp_cs r vm (csm_aux r c1 l1 t1 t2));
== { interp_m_ok r vm c2 l2 }
aplus (amult c2 (interp_vl r vm l2))
(interp_cs r vm (csm_aux r c1 l1 t1 t2));
== { csm_aux_ok r vm c1 l1 t1 t2 }
aplus (amult c2 (interp_vl r vm l2))
(aplus (interp_cs r vm s1) (interp_cs r vm t2));
== { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) }
aplus (amult c2 (interp_vl r vm l2))
(aplus (interp_cs r vm t2) (interp_cs r vm s1));
== { r.cm_add.associativity
(amult c2 (interp_vl r vm l2))
(interp_cs r vm t2)
(interp_cs r vm s1)
}
aplus (aplus (amult c2 (interp_vl r vm l2))
(interp_cs r vm t2))
(interp_cs r vm s1);
== { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1;
interp_m_ok r vm c1 l1 }
aplus (interp_cs r vm s2) (interp_cs r vm s1);
== { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) }
aplus (interp_cs r vm s1) (interp_cs r vm s2);
}
end
val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a
-> c1:a -> l1:varlist -> s2:canonical_sum a ->
Lemma
(interp_cs r vm (monom_insert r c1 l1 s2) ==
r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2))
let rec monom_insert_ok #a r vm c1 l1 s2 =
let aplus = r.cm_add.mult in
let amult = r.cm_mult.mult in
let aone = r.cm_mult.unit in
match s2 with
| Cons_monom c2 l2 t2 ->
if l1 = l2
then
calc (==) {
interp_cs r vm (monom_insert r c1 l1 s2);
== { }
interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2);
== { }
ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2;
== { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 }
aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2);
== { interp_m_ok r vm (aplus c1 c2) l1 }
aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2);
== { distribute_right r c1 c2 (interp_vl r vm l2) }
aplus (aplus (amult c1 (interp_vl r vm l1))
(amult c2 (interp_vl r vm l2)))
(interp_cs r vm t2);
== { r.cm_add.associativity
(amult c1 (interp_vl r vm l1))
(amult c2 (interp_vl r vm l2))
(interp_cs r vm t2) }
aplus (amult c1 (interp_vl r vm l1))
(aplus (amult c2 (interp_vl r vm l2))
(interp_cs r vm t2));
== { ics_aux_ok r vm (interp_m r vm c2 l2) t2 }
aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2);
}
else
if varlist_lt l1 l2 then ()
else
calc (==) {
interp_cs r vm (monom_insert r c1 l1 s2);
== { }
interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2));
== { }
aplus (amult c2 (interp_vl r vm l2))
(interp_cs r vm (monom_insert r c1 l1 t2));
== { monom_insert_ok r vm c1 l1 t2 }
aplus (amult c2 (interp_vl r vm l2))
(aplus (amult c1 (interp_vl r vm l1))
(interp_cs r vm t2));
== { r.cm_add.commutativity
(amult c1 (interp_vl r vm l1))
(interp_cs r vm t2) }
aplus (amult c2 (interp_vl r vm l2))
(aplus (interp_cs r vm t2)
(amult c1 (interp_vl r vm l1)));
== { r.cm_add.associativity
(amult c2 (interp_vl r vm l2))
(interp_cs r vm t2)
(amult c1 (interp_vl r vm l1)) }
aplus (aplus (amult c2 (interp_vl r vm l2))
(interp_cs r vm t2))
(amult c1 (interp_vl r vm l1));
== { ics_aux_ok r vm (interp_m r vm c2 l2) t2 }
aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1));
== { r.cm_add.commutativity
(interp_cs r vm s2)
(amult c1 (interp_vl r vm l1)) }
aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2);
}
| Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone
let c2 = aone in
if l1 = l2
then
calc (==) {
interp_cs r vm (monom_insert r c1 l1 s2);
== { }
interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2);
== { }
ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2;
== { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 }
aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2);